Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Infect Immun ; : e0016924, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297649

ABSTRACT

The increase in urinary tract infections (UTI) caused by antibiotic-resistant Escherichia coli requires the development of new therapeutic agents and prophylactic vaccines. To evaluate the efficacy of new lead candidates, we implemented a cynomolgus macaque UTI challenge model that mimics human uncomplicated cystitis in response to transurethral challenge with a multidrug-resistant (MDR) E. coli serotype O25b ST131 isolate. E. coli fimbrial adhesin FimH and O-antigens are separately under clinical evaluation by others as vaccine candidates to prevent UTI and invasive urosepsis disease, respectively. Accordingly, we assessed the protective efficacy of three 50-µg intramuscular doses of a novel recombinant FimH antigen adjuvanted with liposomal QS21/MPLA compared with saline placebo in groups of nine animals. A third group was vaccinated with this FimH formulation in combination with 1 µg each of a four-valent mixture of serotype O1a, O2, O6, and O25b O-antigen CRM197 lattice glycoconjugates. Both vaccines elicited high levels of serum FimH IgG and adhesin blocking antibodies at the time of bacterial challenge and, for the combination group, O-antigen-specific antibodies. Following bacterial challenge, both vaccinated groups showed >200- and >700-fold reduction in bacteriuria at day 2 and day 7 post-infection compared with placebo, respectively. In parallel, both vaccines significantly reduced levels of inflammatory biomarkers IL-8 and myeloperoxidase in the urine at day 2 post-infection relative to placebo. Results provide preclinical proof-of-concept for the prevention of an MDR UTI infection by these new vaccine formulations.

2.
Infect Immun ; 90(4): e0002222, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35311580

ABSTRACT

Multivalent O-antigen polysaccharide glycoconjugate vaccines are under development to prevent invasive infections caused by pathogenic Enterobacteriaceae. Sequence type 131 (ST131) Escherichia coli of serotype O25b has emerged as the predominant lineage causing invasive multidrug-resistant extraintestinal pathogenic E. coli (ExPEC) infections. We observed the prevalence of E. coli O25b ST131 among a contemporary collection of isolates from U.S. bloodstream infections from 2013 to 2016 (n = 444) and global urinary tract infections from 2014 to 2017 (n = 102) to be 25% and 24%, respectively. To maximize immunogenicity of the serotype O25b O antigen, we investigated glycoconjugate properties, including CRM197 carrier protein cross-linking (single-end versus cross-linked "lattice") and conjugation chemistry (reductive amination chemistry in dimethyl sulfoxide [RAC/DMSO] versus ((2-((2-oxoethyl)thio)ethyl)carbamate [eTEC] linker). Using opsonophagocytic assays (OPAs) to measure serum functional antibody responses to vaccination, we observed that higher-molecular-mass O25b long-chain lattice conjugates showed improved immunogenicity in mice compared with long- or short-chain O antigens conjugated via single-end attachment. The lattice conjugates protected mice from lethal challenge with acapsular O25b ST131 strains as well as against hypervirulent O25b isolates expressing K5 or K100 capsular polysaccharides. A single 1-µg dose of long-chain O25b lattice conjugate constructed with both chemistries also elicited robust serum IgG and OPA responses in cynomolgus macaques. Our findings show that key properties of the O-antigen carrier protein conjugate such as saccharide epitope density and degree of intermolecular cross-linking can significantly enhance functional immunogenicity.


Subject(s)
Escherichia coli Infections , O Antigens , Animals , Carrier Proteins , Escherichia coli , Escherichia coli Infections/prevention & control , Glycoconjugates , Mice
3.
Infect Immun ; 87(12)2019 12.
Article in English | MEDLINE | ID: mdl-31591168

ABSTRACT

The physiopathology of malaria, one of the most deadly human parasitic diseases worldwide, is complex, as it is a systemic disease involving multiple parasitic stages and hosts and leads to the activation of numerous immune cells and release of inflammatory mediators. While some cytokines increased in the blood of patients infected with Plasmodium falciparum have been extensively studied, others, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3), have not received much attention. GM-CSF and IL-3 belong to the ß common (ßc/CD131) chain family of cytokines, which exhibit pleiotropic functions, including the regulation of myeloid cell growth, differentiation, and activation. GM-CSF can be secreted by multiple cell types, whereas IL-3 is mostly restricted to T cells, yet innate response activator (IRA) B cells, a subset of innate B1 B cells, also produce significant amounts of these cytokines during bacterial sepsis via Toll-like receptor 4 (TLR4)/MyD88 sensing of lipopolysaccharides. Herein, using murine models of malaria, we report a sustained production of GM-CSF and IL-3 from IgM+ and IgM-/IgG+ CD138+ Blimp-1+ innate B1b B cell plasmablasts. IgM+ B1b B cells include IRA-like and non-IRA B cells and express higher levels of both cytokines than do their IgG+ counterparts. Interestingly, as infection progresses, the relative proportion of IgM+ B1 B cells decreases while that of IgG+ plasmablasts increases, correlating with potential isotype switching of GM-CSF- and IL-3-producing IgM+ B1 B cells. GM-CSF/IL-3+ B1 B cells originate in the spleen of infected mice and are partially dependent on type I and type II interferon signaling to produce both cytokines. These data reveal that GM-CSF and IL-3 are produced during malaria infections, initially from IgM+ and then from IgG+ B1b B cell plasmablasts, which may represent important emergency cellular sources of these cytokines. These results further highlight the phenotypic heterogeneity of innate B1 B cell subsets and of their possible fates in a relevant murine model of parasitic infection in vivo.


Subject(s)
B-Lymphocyte Subsets/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-3/metabolism , Malaria/immunology , Plasmodium chabaudi/immunology , Plasmodium yoelii/immunology , Animals , Disease Models, Animal , Lymphocyte Activation/immunology , Malaria/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/immunology , Spleen/immunology
4.
Trends Immunol ; 37(6): 375-385, 2016 06.
Article in English | MEDLINE | ID: mdl-27131432

ABSTRACT

Recent findings have revealed roles for systemic and mucosa-resident memory CD8(+) T cells in the orchestration of innate immune responses critical to host defense upon microbial infection. Here we integrate these findings into the current understanding of the molecular and cellular signals controlling memory CD8(+) T cell reactivation and the mechanisms by which these cells mediate effective protection in vivo. The picture that emerges presents memory CD8(+) T cells as early sensors of danger signals, mediating protective immunity both through licensing of cellular effectors of the innate immune system and via the canonical functions associated with memory T cells. We discuss implications for the development of T cell vaccines and therapies and highlight important areas in need of further investigation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunity, Mucosal , Immunologic Memory , Immunotherapy, Adoptive/methods , Intestinal Mucosa/immunology , Lymphocyte Subsets/immunology , Vaccines/immunology , Animals , CD8-Positive T-Lymphocytes/transplantation , Humans , Immunotherapy, Adoptive/trends , Lymphocyte Subsets/transplantation , Receptors, Pattern Recognition/metabolism
5.
PLoS Pathog ; 12(10): e1005975, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27792766

ABSTRACT

Malaria remains a global health burden causing significant morbidity, yet the mechanisms underlying disease outcomes and protection are poorly understood. Herein, we analyzed the peripheral blood of a unique cohort of Malawian children with severe malaria, and performed a comprehensive overview of blood leukocytes and inflammatory mediators present in these patients. We reveal robust immune cell activation, notably of CD14+ inflammatory monocytes, NK cells and plasmacytoid dendritic cells (pDCs) that is associated with very high inflammation. Using the Plasmodium yoelii 17X YM surrogate mouse model of lethal malaria, we report a comparable pattern of immune cell activation and inflammation and found that type I IFN represents a key checkpoint for disease outcomes. Compared to wild type mice, mice lacking the type I interferon (IFN) receptor exhibited a significant decrease in immune cell activation and inflammatory response, ultimately surviving the infection. We demonstrate that pDCs were the major producers of systemic type I IFN in the bone marrow and the blood of infected mice, via TLR7/MyD88-mediated recognition of Plasmodium parasites. This robust type I IFN production required priming of pDCs by CD169+ macrophages undergoing activation upon STING-mediated sensing of parasites in the bone marrow. pDCs and macrophages displayed prolonged interactions in this compartment in infected mice as visualized by intravital microscopy. Altogether our findings describe a novel mechanism of pDC activation in vivo and precise stepwise cell/cell interactions taking place during severe malaria that contribute to immune cell activation and inflammation, and subsequent disease outcomes.


Subject(s)
Dendritic Cells/immunology , Macrophage Activation/immunology , Macrophages/immunology , Malaria/immunology , Animals , Bone Marrow Cells/immunology , Disease Models, Animal , Flow Cytometry , Humans , Interferon Type I/immunology , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Plasmodium yoelii
6.
Proc Natl Acad Sci U S A ; 110(8): 3041-6, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23386724

ABSTRACT

Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.


Subject(s)
Adenoviridae/immunology , Antigens, CD/physiology , CD8-Positive T-Lymphocytes/immunology , Lectins, C-Type/physiology , Mannose-Binding Lectins/physiology , Needles , Skin , Viral Vaccines/immunology , Adenoviridae/genetics , Flow Cytometry , Genetic Vectors , Microscopy, Confocal
7.
Cell Immunol ; 291(1-2): 32-40, 2014.
Article in English | MEDLINE | ID: mdl-25205002

ABSTRACT

Monocytes are blood-derived mononuclear phagocytic cells that traffic throughout the body and can provide rapid innate immune effector responses in response to microbial pathogen infections. Among blood monocytes, the most abundant subset in mice is represented by inflammatory Ly6C(+) CCR2(+) monocytes and is the functional equivalent of the CD14(+) monocytes in humans. Herein we focus on published evidence describing the exquisite functional plasticity of these cells, and we extend this overview to their multiples roles in vivo during host immune defenses against microbial pathogen infections, as antigen-presenting cells, inflammatory cells or Trojan horse cells.


Subject(s)
Antigen-Presenting Cells/immunology , Inflammation/immunology , Monocytes/immunology , Adaptive Immunity , Animals , Antigens, Ly/immunology , Humans , Immunity, Innate , Inflammation/pathology , Mice , Monocytes/cytology , Receptors, CCR2/immunology
8.
Microbiol Spectr ; 12(6): e0421323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38700324

ABSTRACT

A US collection of invasive Escherichia coli serotype O1 bloodstream infection (BSI) isolates were assessed for genotypic and phenotypic diversity as the basis for designing a broadly protective O-antigen vaccine. Eighty percent of the BSI isolate serotype O1 strains were genotypically ST95 O1:K1:H7. The carbohydrate repeat unit structure of the O1a subtype was conserved in the three strains tested representing core genome multi-locus sequence types (MLST) sequence types ST95, ST38, and ST59. A long-chain O1a CRM197 lattice glycoconjugate antigen was generated using oxidized polysaccharide and reductive amination chemistry. Two ST95 strains were investigated for use in opsonophagocytic assays (OPA) with immune sera from vaccinated animals and in murine lethal challenge models. Both strains were susceptible to OPA killing with O1a glycoconjugate post-immune sera. One of these, a neonatal sepsis strain, was found to be highly lethal in the murine challenge model for which virulence was shown to be dependent on the presence of the K1 capsule. Mice immunized with the O1a glycoconjugate were protected from challenges with this strain or a second, genotypically related, and similarly virulent neonatal isolate. This long-chain O1a CRM197 lattice glycoconjugate shows promise as a component of a multi-valent vaccine to prevent invasive E. coli infections. IMPORTANCE: The Escherichia coli serotype O1 O-antigen serogroup is a common cause of invasive bloodstream infections (BSI) in populations at risk such as newborns and the elderly. Sequencing of US BSI isolates and structural analysis of O polysaccharide antigens purified from strains that are representative of genotypic sub-groups confirmed the relevance of the O1a subtype as a vaccine antigen. O polysaccharide was purified from a strain engineered to produce long-chain O1a O-antigen and was chemically conjugated to CRM197 carrier protein. The resulting glycoconjugate elicited functional antibodies and was protective in mice against lethal challenges with virulent K1-encapsulated O1a isolates.


Subject(s)
Escherichia coli Infections , Escherichia coli , Glycoconjugates , O Antigens , Animals , O Antigens/immunology , O Antigens/genetics , Mice , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Escherichia coli/genetics , Escherichia coli/immunology , Glycoconjugates/immunology , Humans , Serogroup , Escherichia coli Vaccines/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Female , Virulence , Vaccines, Conjugate/immunology , Multilocus Sequence Typing , Disease Models, Animal , Bacteremia/prevention & control , Bacteremia/microbiology , Bacteremia/immunology , Bacterial Proteins
9.
Commun Biol ; 7(1): 1208, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39341987

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) can resolve transcriptional features from individual cells, but scRNA-seq techniques capable of resolving the variable regions of B cell receptors (BCRs) remain limited, especially from widely-used 3'-barcoded libraries. Here, we report a method that can recover paired, full-length variable region sequences of BCRs from 3'-barcoded scRNA-seq libraries. We first verify this method (B3E-seq) can produce accurate, full-length BCR sequences. We then apply this method to profile B cell responses elicited against the capsular polysaccharide of Streptococcus pneumoniae serotype 3 (ST3) by glycoconjugate vaccines in five infant rhesus macaques. We identify BCR features associated with specificity for the ST3 antigen which are present in multiple vaccinated monkeys, indicating a convergent response to vaccination. These results demonstrate the utility of our method to resolve key features of the B cell repertoire and profile antigen-specific responses elicited by vaccination.


Subject(s)
Macaca mulatta , Pneumococcal Vaccines , Receptors, Antigen, B-Cell , Single-Cell Analysis , Streptococcus pneumoniae , Animals , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Single-Cell Analysis/methods , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/genetics , Sequence Analysis, RNA/methods , Vaccination , B-Lymphocytes/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology
10.
Sci Rep ; 14(1): 19899, 2024 08 27.
Article in English | MEDLINE | ID: mdl-39191975

ABSTRACT

Vitamin D deficiency is a common deficiency worldwide, particularly among women of reproductive age. During pregnancy, it increases the risk of immune-related diseases in offspring later in life. However, how the body remembers exposure to an adverse environment during development is poorly understood. Herein, we explore the effects of prenatal vitamin D deficiency on immune cell proportions in offspring using vitamin D deficient mice established by dietary manipulation. We found that prenatal vitamin D deficiency alters immune cell proportions in offspring by changing the transcriptional properties of genes downstream of vitamin D receptor signaling in hematopoietic stem and progenitor cells of both the fetus and adults. Moreover, further investigations of the associations between maternal vitamin D levels and cord blood immune cell profiles from 75 healthy pregnant women and their term offspring also confirm that maternal vitamin D levels in the second trimester significantly affect immune cell proportions in the offspring. These findings imply that the differentiation properties of hematopoiesis act as long-term memories of prenatal vitamin D deficiency exposure in later life.


Subject(s)
Prenatal Exposure Delayed Effects , Vitamin D Deficiency , Vitamin D , Vitamin D Deficiency/immunology , Female , Pregnancy , Animals , Humans , Prenatal Exposure Delayed Effects/immunology , Mice , Vitamin D/blood , Fetal Blood/cytology , Adult , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Hematopoietic Stem Cells/metabolism , Male
11.
Blood ; 117(26): 7063-9, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21566096

ABSTRACT

Langerhans cells (LCs) are a distinct population of dendritic cells that form a contiguous network in the epidermis of the skin. Although LCs possess many of the properties of highly proficient dendritic cells, recent studies have indicated that they are not necessary to initiate cutaneous immunity. In this study, we used a tractable model of cutaneous GVHD, induced by topical application of a Toll-like receptor agonist, to explore the role of LCs in the development of tissue injury. By adapting this model to permit inducible and selective depletion of host LCs, we found that GVHD was significantly reduced when LCs were absent. However, LCs were not required either for CD8 T-cell activation within the draining lymph node or subsequent homing of effector cells to the epidermis. Instead, we found that LCs were necessary for inducing transcription of IFN-γ and other key effector molecules by donor CD8 cells in the epidermis, indicating that they license CD8 cells to induce epithelial injury. These data demonstrate a novel regulatory role for epidermal LCs during the effector phase of an inflammatory immune response in the skin.


Subject(s)
Cell Communication , Cytotoxicity, Immunologic , Epidermis/immunology , Epidermis/pathology , Langerhans Cells/immunology , T-Lymphocytes, Cytotoxic/immunology , Aminoquinolines/toxicity , Animals , Cells, Cultured , Chimera , Epidermis/drug effects , Gene Expression Regulation/drug effects , Graft vs Host Disease/immunology , Granzymes/genetics , Granzymes/metabolism , Imiquimod , Interferon-gamma/genetics , Interferon-gamma/metabolism , Langerhans Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , RNA, Messenger/metabolism , T-Lymphocytes, Cytotoxic/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Toll-Like Receptors/agonists , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
12.
Trends Immunol ; 31(12): 438-45, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21030305

ABSTRACT

Langerhans cells (LCs) are myeloid cells of the epidermis, featured in immunology textbooks as bone marrow-derived antigen-presenting dendritic cells (DCs). A new picture of LC origin, homeostasis and function has emerged, however, after genetic labelling and conditional cell ablation models in mice. LC precursors are recruited into the fetal epidermis, where they differentiate and proliferate in situ. In adults, LCs proliferate at steady state, and during inflammation, in response to signals from neighbouring cells. Here we review the experimental evidence that support either extra-embryonic yolk sac (YS) macrophages or hematopoietic stem cells (HSCs) as the origin of LCs. Beyond LC biology, we propose that YS and HSCs can contribute to the development of distinct subsets of macrophages and DCs.


Subject(s)
Homeostasis , Langerhans Cells/immunology , Myeloid Cells/immunology , Animals , Hematopoietic Stem Cells/immunology , Humans , Skin/immunology , Yolk Sac/immunology
13.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745570

ABSTRACT

Vitamin D deficiency is a common deficiency worldwide, particularly among women of reproductive age. During pregnancy, it increases the risk of immune-related diseases in offspring later in life. However, exactly how the body remembers exposure to an adverse environment during development is poorly understood. Herein, we explore the effects of prenatal vitamin D deficiency on immune cell proportions in offspring using vitamin D deficient mice established by dietary manipulation. We show that prenatal vitamin D deficiency alters immune cell proportions in offspring by changing the transcriptional properties of genes downstream of vitamin D receptor signaling in hematopoietic stem and progenitor cells of both the fetus and adults. Further investigations of the associations between maternal vitamin D levels and cord blood immune cell profiles from 75 healthy pregnant women and their term babies also confirm that maternal vitamin D levels significantly affect immune cell proportions in the babies. Thus, lack of prenatal vitamin D, particularly at the time of hematopoietic stem cell migration from the liver to the bone marrow, has long-lasting effects on immune cell proportions. This highlights the importance of providing vitamin D supplementation at specific stages of pregnancy.

14.
Nat Commun ; 13(1): 2240, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35474218

ABSTRACT

Cognate antigen signal controls CD8+ T cell priming, expansion size and effector versus memory cell fates, but it is not known if and how it modulates the functional features of memory CD8+ T cells. Here we show that the strength of T cell receptor (TCR) signaling controls the requirement for interleukin-2 (IL-2) signals to form a pool of memory CD8+ T cells that competitively re-expand upon secondary antigen encounter. Combining strong TCR and intact IL-2 signaling during priming synergistically induces genome-wide chromatin accessibility in regions targeting a wide breadth of biological processes, consistent with greater T cell functional fitness. Chromatin accessibility in promoters of genes encoding for stem cell, cell cycle and calcium-related proteins correlates with faster intracellular calcium accumulation, initiation of cell cycle and more robust expansion. High-dimensional flow-cytometry analysis of these T cells also highlights higher diversity of T cell subsets and phenotypes with T cells primed with stronger TCR and IL-2 stimulation than those primed with weaker strengths of TCR and/or IL-2 signals. These results formally show that epitope selection in vaccine design impacts memory CD8+ T cell epigenetic programming and function.


Subject(s)
Biological Phenomena , Interleukin-2 , Antigens/metabolism , CD8-Positive T-Lymphocytes , Calcium/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Immunologic Memory , Receptors, Antigen, T-Cell/metabolism
15.
JACS Au ; 2(9): 2135-2151, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36186572

ABSTRACT

Extraintestinal pathogenic Escherichia coli (ExPEC) is a major health concern due to emerging antibiotic resistance. Along with O1A, O2, and O6A, E. coli O25B is a major serotype within the ExPEC group, which expresses a unique O-antigen. Clinical studies with a glycoconjugate vaccine of the above-mentioned O-types revealed O25B as the least immunogenic component, inducing relatively weak IgG titers. To evaluate the immunological properties of semisynthetic glycoconjugate vaccine candidates against E. coli O25B, we here report the chemical synthesis of an initial set of five O25B glycan antigens differing in length, from one to three repeat units, and frameshifts of the repeat unit. The oligosaccharide antigens were conjugated to the carrier protein CRM197. The resulting semisynthetic glycoconjugates induced functional IgG antibodies in mice with opsonophagocytic activity against E. coli O25B. Three of the oligosaccharide-CRM197 conjugates elicited functional IgGs in the same order of magnitude as a conventional CRM197 glycoconjugate prepared with native O25B O-antigen and therefore represent promising vaccine candidates for further investigation. Binding studies with two monoclonal antibodies (mAbs) revealed nanomolar anti-O25B IgG responses with nanomolar K D values and with varying binding epitopes. The immunogenicity and mAb binding data now allow for the rational design of additional synthetic antigens for future preclinical studies, with expected further improvements in the functional antibody responses. Moreover, acetylation of a rhamnose residue was shown to be likely dispensable for immunogenicity, as a deacylated antigen was able to elicit strong functional IgG responses. Our findings strongly support the feasibility of a semisynthetic glycoconjugate vaccine against E. coli O25B.

16.
Blood ; 113(24): 6112-9, 2009 Jun 11.
Article in English | MEDLINE | ID: mdl-19366987

ABSTRACT

We characterized the localization, phenotype, and some functions of plasmacytoid dendritic cells (pDCs) in the human spleen. pDCs were localized in the marginal zone and the periarteriolar region. Some were also found in the red pulp. pDCs were immature by phenotypic labeling, consistently with their capacity to internalize Dextran in a functional assay. In spleens from HIV-infected patients with thrombocytopenic purpura, these characteristics were unaffected. However, an accumulation of pDCs, but not myeloid dendritic cells (mDCs), was observed in some HIV+ patients, correlating with high proviral loads. Moreover, although undetectable in most HIV- patients, interferon-alpha (IFN-alpha) production was evidenced in situ and by flow cytometry in most HIV+ patients. IFN-alpha was located in the marginal zone. Surprisingly, IFN-alpha colocalized only with few pDCs, but rather with other cells, including T and B lymphocytes, mDCs, and macrophages. Therefore, pDCs accumulated in spleens from HIV+ patients with high proviral loads, but they did not seem to be the main IFN-alpha producers.


Subject(s)
Dendritic Cells/physiology , HIV Infections/immunology , HIV-1/physiology , Interferon-alpha/biosynthesis , Spleen/immunology , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Chronic Disease , Endocytosis , Flow Cytometry , Fluorescent Antibody Technique , HIV Infections/drug therapy , HIV Infections/virology , Humans , Inflammation Mediators/metabolism , Interferon-alpha/antagonists & inhibitors , Phenotype
17.
Front Immunol ; 11: 576743, 2020.
Article in English | MEDLINE | ID: mdl-33519801

ABSTRACT

T cells expressing high levels of inhibitory receptors such as PD-1 and LAG-3 are a hallmark of chronic infections and cancer. Checkpoint blockade therapies targeting these receptors have been largely validated as promising strategies to restore exhausted T cell functions and clearance of chronic infections and tumors. The inability to develop long-term natural immunity in malaria-infected patients has been proposed to be at least partially accounted for by sustained expression of high levels of inhibitory receptors on T and B lymphocytes. While blockade or lack of PD-1/PD-L1 and/or LAG-3 was reported to promote better clearance of Plasmodium parasites in various mouse models, how exactly blockade of these pathways contributes to enhanced protection is not known. Herein, using the mouse model of non-lethal P. yoelii (Py) infection, we reveal that the kinetics of blood parasitemia as well as CD4+ T follicular helper (TFH) and germinal center (GC) B cell responses are indistinguishable between PD-1-/-, PD-L1-/- and WT mice. Yet, we also report that monoclonal antibody (mAb) blockade of LAG-3 in PD-L1-/- mice promotes accelerated control of blood parasite growth and clearance, consistent with prior therapeutic blockade experiments. However, neither CD4+ TFH and GC B cell responses, nor parasite-specific Ab serum titers and capacity to transfer protection differed. We also found that i) the majority of LAG-3+ cells are T cells, ii) selective depletion of CD4+ but not CD8+ T cells prevents anti-LAG-3-mediated protection, and iii) production of effector cytokines by CD4+ T cells is increased in anti-LAG-3-treated versus control mice. Thus, taken together, these results are consistent with a model in which blockade and/or deficiency of PD-L1 and LAG-3 on parasite-specific CD4+ T cells unleashes their ability to effectively clear blood parasites, independently from humoral responses.


Subject(s)
Antigens, CD/metabolism , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Malaria, Falciparum/metabolism , Plasmodium falciparum/physiology , Animals , Antibodies, Monoclonal/metabolism , Antigens, CD/genetics , B7-H1 Antigen/genetics , CD4-Positive T-Lymphocytes , Cells, Cultured , Disease Models, Animal , Humans , Immunity, Humoral , Life Cycle Stages , Malaria, Falciparum/immunology , Malaria, Falciparum/therapy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Lymphocyte Activation Gene 3 Protein
18.
Nat Commun ; 9(1): 5368, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30560927

ABSTRACT

Foxp3+CD4+ regulatory T (Treg) cells are essential for preventing fatal autoimmunity and safeguard immune homeostasis in vivo. While expression of the transcription factor Foxp3 and IL-2 signals are both required for the development and function of Treg cells, the commitment to the Treg cell lineage occurs during thymic selection upon T cell receptor (TCR) triggering, and precedes the expression of Foxp3. Whether signals beside TCR contribute to establish Treg cell epigenetic and functional identity is still unknown. Here, using a mouse model with reduced IL-2 signaling, we show that IL-2 regulates the positioning of the pioneer factor SATB1 in CD4+ thymocytes and controls genome wide chromatin accessibility of thymic-derived Treg cells. We also show that Treg cells receiving only low IL-2 signals can suppress endogenous but not WT autoreactive T cell responses in vitro and in vivo. Our findings have broad implications for potential therapeutic strategies to reprogram Treg cells in vivo.


Subject(s)
Cellular Reprogramming/genetics , Epigenesis, Genetic/immunology , Interleukin-2/metabolism , Matrix Attachment Region Binding Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmunity/genetics , Cell Differentiation/immunology , Cellular Reprogramming/immunology , Disease Models, Animal , Female , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , HEK293 Cells , Humans , Interleukin-2/immunology , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Listeriosis/immunology , Listeriosis/microbiology , Male , Matrix Attachment Region Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/metabolism , Thymocytes/immunology , Thymocytes/metabolism , Thymocytes/physiology , Thymus Gland/cytology
19.
Science ; 336(6077): 86-90, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22442384

ABSTRACT

Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11b(high) monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80(bright) macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia--cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.


Subject(s)
Dendritic Cells/cytology , Hematopoietic Stem Cells/cytology , Macrophages/cytology , Myeloid Cells/cytology , Myelopoiesis , Proto-Oncogene Proteins c-myb/metabolism , Yolk Sac/cytology , Animals , Cell Lineage , Cell Proliferation , Chick Embryo , Dendritic Cells/physiology , Embryo, Mammalian/cytology , Gene Deletion , Gene Expression Regulation, Developmental , Genes, myb , Hematopoietic Stem Cells/physiology , Kupffer Cells/cytology , Kupffer Cells/physiology , Langerhans Cells/cytology , Langerhans Cells/physiology , Liver/embryology , Macrophages/physiology , Mice , Microglia/cytology , Microglia/physiology , Myeloid Cells/physiology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
20.
J Exp Med ; 206(13): 3089-100, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-19995948

ABSTRACT

Most tissues develop from stem cells and precursors that undergo differentiation as their proliferative potential decreases. Mature differentiated cells rarely proliferate and are replaced at the end of their life by new cells derived from precursors. Langerhans cells (LCs) of the epidermis, although of myeloid origin, were shown to renew in tissues independently from the bone marrow, suggesting the existence of a dermal or epidermal progenitor. We investigated the mechanisms involved in LC development and homeostasis. We observed that a single wave of LC precursors was recruited in the epidermis of mice around embryonic day 18 and acquired a dendritic morphology, major histocompatibility complex II, CD11c, and langerin expression immediately after birth. Langerin(+) cells then undergo a massive burst of proliferation between postnatal day 2 (P2) and P7, expanding their numbers by 10-20-fold. After the first week of life, we observed low-level proliferation of langerin(+) cells within the epidermis. However, in a mouse model of atopic dermatitis (AD), a keratinocyte signal triggered increased epidermal LC proliferation. Similar findings were observed in epidermis from human patients with AD. Therefore, proliferation of differentiated resident cells represents an alternative pathway for development in the newborn, homeostasis, and expansion in adults of selected myeloid cell populations such as LCs. This mechanism may be relevant in locations where leukocyte trafficking is limited.


Subject(s)
Dermatitis, Atopic/pathology , Epidermal Cells , Homeostasis , Langerhans Cells/physiology , Animals , Animals, Newborn , Antigens, Surface/analysis , CX3C Chemokine Receptor 1 , Cell Differentiation , Epidermis/embryology , Humans , Keratinocytes/physiology , Lectins, C-Type/analysis , Leukocyte Common Antigens/analysis , Mannose-Binding Lectins/analysis , Mice , Receptors, Chemokine/physiology , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL