Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters

Publication year range
1.
J Am Chem Soc ; 144(27): 11949-11954, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35749730

ABSTRACT

α-Synuclein (α-Syn) is an intrinsically disordered protein which self-assembles into highly organized ß-sheet structures that accumulate in plaques in brains of Parkinson's disease patients. Oxidative stress influences α-Syn structure and self-assembly; however, the basis for this remains unclear. Here we characterize the chemical and physical effects of mild oxidation on monomeric α-Syn and its aggregation. Using a combination of biophysical methods, small-angle X-ray scattering, and native ion mobility mass spectrometry, we find that oxidation leads to formation of intramolecular dityrosine cross-linkages and a compaction of the α-Syn monomer by a factor of √2. Oxidation-induced compaction is shown to inhibit ordered self-assembly and amyloid formation by steric hindrance, suggesting an important role of mild oxidation in preventing amyloid formation.


Subject(s)
Parkinson Disease , alpha-Synuclein , Amyloid/chemistry , Humans , Parkinson Disease/metabolism , Tyrosine/analogs & derivatives , Tyrosine/chemistry , alpha-Synuclein/chemistry
2.
Biochemistry ; 60(47): 3644-3658, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34730940

ABSTRACT

The aggregation of α-synuclein (αSN) and increased oxidative stress leading to lipid peroxidation are pathological characteristics of Parkinson's disease (PD). Here, we report that aggregation of αSN in the presence of lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) increases the stability and the yield of αSN oligomers (αSO). Further, we show that ONE is more efficient than HNE at inducing αSO. In addition, we demonstrate that the two αSO differ in both size and shape. ONE-αSO are smaller in size than HNE-αSO, except when they are formed at a high molar excess of aldehyde. In both monomeric and oligomeric αSN, His50 is the main target of HNE modification, and HNE-induced oligomerization is severely retarded in the mutant His50Ala αSN. In contrast, ONE-induced aggregation of His50Ala αSN occurs readily, demonstrating the different pathways for inducing αSN aggregation by HNE and ONE. Our results show different morphologies of the HNE-treated and ONE-treated αSO and different roles of His50 in their modification of αSN, but we also observe structural similarities between these αSO and the non-treated αSO, e.g., flexible C-terminus, a folded core composed of the N-terminal and NAC region. Furthermore, HNE-αSO show a similar deuterium uptake as a previously characterized oligomer formed by non-treated αSO, suggesting that the backbone conformational dynamics of their folded cores resemble one another.


Subject(s)
Aldehydes/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , Aldehydes/chemistry , Cell Line, Tumor , Humans , Lipid Peroxidation , Nuclear Magnetic Resonance, Biomolecular , Protein Aggregates , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Scattering, Small Angle , X-Ray Diffraction , alpha-Synuclein/chemistry , alpha-Synuclein/isolation & purification , alpha-Synuclein/ultrastructure
3.
Med Microbiol Immunol ; 210(1): 13-32, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33206237

ABSTRACT

Chlamydia trachomatis (C. trachomatis) is the leading cause of sexually transmitted bacterial infections worldwide, with over 120 million annual cases. C. trachomatis infections are associated with severe reproductive complications in women such as extrauterine pregnancy and tubal infertility. The infections are often long lasting, associated with immunopathology, and fail to elicit protective immunity which makes recurrent infections common. The immunological mechanisms involved in C. trachomatis infections are only partially understood. Murine infection models suggest that the complement system plays a significant role in both protective immunity and immunopathology during primary Chlamydia infections. However, only limited structural and mechanistic evidence exists on complement-mediated immunity against C. trachomatis. To expand our current knowledge on this topic, we analyzed global complement deposition on C. trachomatis using comprehensive in-depth mass spectrometry-based proteomics. We show that factor B, properdin, and C4b bind to C. trachomatis demonstrating that C. trachomatis-induced complement activation proceeds through at least two activation pathways. Complement activation leads to cleavage and deposition of C3 and C5 activation products, causing initiation of the terminal complement pathway and deposition of C5b, C6, C7, C8, C9 on C. trachomatis. Interestingly, using immunoelectron microscopy, we show that C5b-9 deposition occurred sporadically and only in rare cases formed complete lytic terminal complexes, possibly caused by the presence of the negative regulators vitronectin and clusterin. Finally, cleavage analysis of C3 demonstrated that deposited C3b is degraded to the opsonins iC3b and C3dg and that this complement opsonization facilitates C. trachomatis binding to human B-cells.


Subject(s)
Chlamydia trachomatis/immunology , Chlamydia trachomatis/metabolism , Complement Activation , Complement System Proteins/metabolism , Serum/chemistry , Complement C4/metabolism , Complement C4b/metabolism , Complement Factor B/metabolism , Humans , Protein Binding , Proteomics , Serum/microbiology
4.
J Biol Chem ; 294(31): 11817-11828, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31197037

ABSTRACT

The serine protease high-temperature requirement protein A1 (HtrA1) is associated with protein-misfolding disorders such as Alzheimer's disease and transforming growth factor ß-induced protein (TGFBIp)-linked corneal dystrophy. In this study, using several biochemical and biophysical approaches, including recombinant protein expression, LC-MS/MS and 2DE analyses, and thioflavin T (ThT) fluorescence assays for amyloid fibril detection, and FTIR assays, we investigated the role of HtrA1 both in normal TGFBIp turnover and in corneal amyloid formation. We show that HtrA1 can cleave WT TGFBIp but prefers amyloidogenic variants. Corneal TGFBIp is extensively processed in healthy people, resulting in C-terminal degradation products spanning the FAS1-4 domain of TGFBIp. We show here that HtrA1 cleaves the WT FAS1-4 domain only inefficiently, whereas the amyloidogenic FAS1-4 mutations transform this domain into a considerably better HTRA1 substrate. Moreover, HtrA1 cleavage of the mutant FAS1-4 domains generated peptides capable of forming in vitro amyloid aggregates. Significantly, these peptides have been previously identified in amyloid deposits in vivo, supporting the idea that HtrA1 is a causative agent for TGFBIp-associated amyloidosis in corneal dystrophy. In summary, our results indicate that TGFBIp is an HtrA1 substrate and that some mutations in the gene encoding TGFBIp cause aberrant HtrA1-mediated processing that results in amyloidogenesis in corneal dystrophies.


Subject(s)
Amyloid/metabolism , Extracellular Matrix Proteins/metabolism , High-Temperature Requirement A Serine Peptidase 1/metabolism , Transforming Growth Factor beta/metabolism , Aged, 80 and over , Chromatography, High Pressure Liquid , Cornea/metabolism , Corneal Diseases/metabolism , Corneal Diseases/pathology , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Mutagenesis, Site-Directed , Peptides/analysis , Peptides/metabolism , Protein Domains , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Tandem Mass Spectrometry , Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/genetics
5.
J Biol Chem ; 294(11): 4215-4232, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30655291

ABSTRACT

Aggregation of α-synuclein (αSN) is implicated in neuronal degeneration in Parkinson's disease and has prompted searches for natural compounds inhibiting αSN aggregation and reducing its tendency to form toxic oligomers. Oil from the olive tree (Olea europaea L.) represents the main source of fat in the Mediterranean diet and contains variable levels of phenolic compounds, many structurally related to the compound oleuropein. Here, using αSN aggregation, fibrillation, size-exclusion chromatography-multiangle light scattering (SEC-MALS)-based assays, and toxicity assays, we systematically screened the fruit extracts of 15 different olive varieties to identify compounds that can inhibit αSN aggregation and oligomer toxicity and also have antioxidant activity. Polyphenol composition differed markedly among varieties. The variety with the most effective antioxidant and aggregation activities, Koroneiki, combined strong inhibition of αSN fibril nucleation and elongation with strong disaggregation activity on preformed fibrils and prevented the formation of toxic αSN oligomers. Fractionation of the Koroneiki extract identified oleuropein aglycone, hydroxyl oleuropein aglycone, and oleuropein as key compounds responsible for the differences in inhibition across the extracts. These phenolic compounds inhibited αSN amyloidogenesis by directing αSN monomers into small αSN oligomers with lower toxicity, thereby suppressing the subsequent fibril growth phase. Our results highlight the molecular consequences of differences in the level of effective phenolic compounds in different olive varieties, insights that have implications for long-term human health.


Subject(s)
Fruit/chemistry , Iridoids/pharmacology , Olea/chemistry , alpha-Synuclein/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, Gel , Dose-Response Relationship, Drug , Humans , Iridoid Glucosides , Iridoids/chemistry , Iridoids/isolation & purification , Light , Protein Aggregates/drug effects , Structure-Activity Relationship , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
6.
Infect Immun ; 88(7)2020 06 22.
Article in English | MEDLINE | ID: mdl-32284372

ABSTRACT

The human respiratory tract pathogen Chlamydia pneumoniae, which causes mild to severe infections, has been associated with the development of chronic inflammatory diseases. To understand the biology of C. pneumoniae infections, several studies have investigated the interaction between C. pneumoniae and professional phagocytes. However, these studies have been conducted under nonopsonizing conditions, making the role of opsonization in C. pneumoniae infections elusive. Thus, we analyzed complement and antibody opsonization of C. pneumoniae and evaluated how opsonization affects chlamydial infectivity and phagocytosis in human monocytes and neutrophils. We demonstrated that IgG antibodies and activation products of complement C3 and C4 are deposited on the surface of C. pneumoniae elementary bodies when incubated in human serum. Complement activation limits C. pneumoniae infectivity in vitro and has the potential to induce bacterial lysis by the formation of the membrane attack complex. Coculture of C. pneumoniae and freshly isolated human leukocytes showed that complement opsonization is superior to IgG opsonization for efficient opsonophagocytosis of C. pneumoniae in monocytes and neutrophils. Neutrophil-mediated phagocytosis of C. pneumoniae was crucially dependent on opsonization, while monocytes retained minor phagocytic potential under nonopsonizing conditions. Complement opsonization significantly enhanced the intracellular neutralization of C. pneumoniae in peripheral blood mononuclear cells and neutrophils and almost abrogated the infectious potential of C. pneumoniae In conclusion, we demonstrated that complements limit C. pneumoniae infection in vitro by interfering with C. pneumoniae entry into permissive cells by direct complement-induced lysis and by tagging bacteria for efficient phagocytosis in both monocytes and neutrophils.


Subject(s)
Chlamydophila Infections/immunology , Chlamydophila Infections/microbiology , Chlamydophila pneumoniae/physiology , Monocytes/immunology , Neutrophils/immunology , Phagocytosis , Antibodies, Bacterial/immunology , Complement Activation/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Humans , Monocytes/metabolism , Neutrophils/metabolism
7.
Clin Proteomics ; 17: 29, 2020.
Article in English | MEDLINE | ID: mdl-32782445

ABSTRACT

BACKGROUND: The aetiologies and pathogeneses of the joint diseases rheumatoid arthritis (RA) and spondyloarthritis (SpA) are still not fully elucidated. To increase our understanding of the molecular pathogenesis, we analysed the protein composition of synovial fluid (SF) from rheumatoid arthritis (RA) and spondyloarthritis (SpA) patients. METHODS: Fifty-six synovial fluid samples (RA, n = 32; SpA, n = 24) were digested with trypsin, and the resulting peptides were separated by liquid chromatography and analysed by tandem mass spectrometry. Additionally, the concentration of cell-free DNA (cfDNA) in the synovial fluid was measured, and plasma C-reactive protein (CRP) was determined. RESULTS: Three hundred thirty five proteins were identified within the SF. The more abundant proteins seen in RA SF were inflammatory proteins, including proteins originating from neutrophil granulocytes, while SpA SF had less inflammatory proteins and a higher concentration of haptoglobin. The concentration of cell-free DNA in the SF increased together with proteins that may have originated from neutrophils. Plasma CRP levels in both RA and SpA, correlated to other acute phase reactants. CONCLUSIONS: The proteomic results underline that neutrophils are central in the RA pathology but not in SpA, and even though inhibitors of neutrophils (migration, proteinase inhibitors) were present in the SF it was not sufficient to interrupt the disease process.

8.
Exp Cell Res ; 379(1): 73-82, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30922921

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and malignant type of primary brain tumor and is characterized by its sudden onset and invasive growth into the brain parenchyma. The invasive tumor cells evade conventional treatments and are thought to be responsible for the ubiquitous tumor regrowth. Understanding the behavior of these invasive tumor cells and their response to therapeutic agents could help improve patient outcome. In this study, we present a GBM tumorsphere migration model with high biological complexity to study migrating GBM cells in a quantitative and qualitative manner. We demonstrated that the in vitro migration model could be used to investigate both inhibition and stimulation of cell migration with oxaliplatin and GBM-derived extracellular vesicles, respectively. The intercellular heterogeneity within the GBM tumorspheres was examined by immunofluorescent staining of nestin/vimentin and GFAP, which showed nestin and vimentin being highly expressed in the periphery of tumorspheres and GFAP mostly in cells in the tumorsphere core. We further showed that this phenotypic gradient was present in vivo after implanting dissociated GBM tumorspheres, with the cells migrating away from the tumor being nestin-positive and GFAP-negative. These results indicate that GBM tumorsphere migration models, such as the one presented here, could provide a more detailed insight into GBM cell biology and prove highly relevant as a pre-clinical platform for drug screening and assessing drug response in the treatment of GBM.


Subject(s)
Brain Neoplasms/pathology , Cell Movement/physiology , Glioblastoma/pathology , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Evaluation Studies as Topic , Gene Expression Regulation, Neoplastic/physiology , Glioblastoma/metabolism , Humans , Mice , Mice, Nude , Nestin/metabolism , Vimentin/metabolism
9.
Biochemistry ; 57(34): 5145-5158, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30067901

ABSTRACT

The intrinsically disordered protein α-synuclein (aSN) forms insoluble aggregates in the brains of Parkinson's disease (PD) patients. Cytotoxicity is attributed to a soluble aSN oligomeric species that permeabilizes membranes significantly more than monomers and fibrils. In humans, the A53T mutation induces early onset PD and increases the level of aSN oligomerization and fibrillation propensity, but Thr53 occurs naturally in aSNs of most animals. We compared aSNs from elephant, bowhead whale, and pig with human aSN. While all three animal aSNs showed significantly weakened fibrillation, elephant aSN formed much more oligomer, and pig aSN much less, than human aSN did. However, all animal aSN oligomers showed weakened permeabilization toward anionic lipid vesicles, indicative of decreased cytotoxicity. These animal aSNs share three substitutions compared to human aSN: A53T, G68E, and V95G. We analyzed aggregation and membrane binding of all eight mutants combining these three mutations. While the G68E mutation is particularly important in weakening fibrillation and possible toxicity, the strongest effect is seen when all three mutations are present. Thus, a small number of mutations can significantly decrease aSN toxicity.


Subject(s)
Amyloid/chemistry , Cell Membrane Permeability , Mutation , alpha-Synuclein/metabolism , Animals , Bowhead Whale , Elephants , Humans , Protein Conformation , Swine , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
10.
J Proteome Res ; 16(1): 346-354, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27627584

ABSTRACT

Rheumatoid arthritis (RA) is an inflammatory joint disease leading to cartilage damage and ultimately impaired joint function. To gain new insight into the systemic immune manifestations of RA, we characterized the colon mucosa proteome from 11 RA-patients and 10 healthy controls. The biopsies were extracted by colonoscopy and analyzed by label-free quantitative proteomics, enabling the quantitation of 5366 proteins. The abundance of dihydrofolate reductase (DHFR) was statistically significantly increased in RA-patient biopsies compared with controls and correlated with the administered dosage of methotrexate (MTX), the most frequently prescribed immunosuppressive drug for RA. Additionally, our data suggest that treatment with Leflunomide, a common alternative to MTX, increases DHFR. The findings were supported by immunohistochemistry with confocal microscopy, which furthermore demonstrated that DHFR was located in the cytosol of the intestinal epithelial and interstitial cells. Finally, we identified 223 citrullinated peptides from 121 proteins. Three of the peptides were unique to RA. The list of citrullinated proteins was enriched in extracellular and membrane proteins and included known targets of anticitrullinated protein antibodies (ACPAs). Our findings support that the colon mucosa could trigger the production of ACPAs, which could contribute to the onset of RA. The MS data have been deposited to ProteomeXchange with identifiers PXD001608 and PXD003082.


Subject(s)
Antirheumatic Agents/adverse effects , Arthritis, Rheumatoid/genetics , Autoantibodies/biosynthesis , Intestinal Mucosa/immunology , Proteome/genetics , Tetrahydrofolate Dehydrogenase/genetics , Adult , Aged , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Case-Control Studies , Citrulline/metabolism , Colon/drug effects , Colon/immunology , Colon/pathology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/pathology , Female , Gene Expression Regulation , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Isoxazoles/adverse effects , Leflunomide , Male , Methotrexate/adverse effects , Middle Aged , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/genetics , Peptides, Cyclic/immunology , Proteome/immunology , Tetrahydrofolate Dehydrogenase/immunology
11.
J Biol Chem ; 291(32): 16849-62, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27281819

ABSTRACT

Glycosaminoglycans (GAGs) bind all known amyloid plaques and help store protein hormones in (acidic) granular vesicles, but the molecular mechanisms underlying these important effects are unclear. Here we investigate GAG interactions with the peptide hormone salmon calcitonin (sCT). GAGs induce fast sCT fibrillation at acidic pH and only bind monomeric sCT at acidic pH, inducing sCT helicity. Increasing GAG sulfation expands the pH range for binding. Heparin, the most highly sulfated GAG, binds sCT in the pH interval 3-7. Small angle x-ray scattering indicates that sCT monomers densely decorate and pack single heparin chains, possibly via hydrophobic patches on helical sCT. sCT fibrillates without GAGs, but heparin binding accelerates the process by decreasing the otherwise long fibrillation lag times at low pH and accelerates fibril growth rates at neutral pH. sCT·heparin complexes form ß-sheet-rich heparin-covered fibrils. Solid-state NMR reveals that heparin does not alter the sCT fibrillary core around Lys(11) but makes changes to Val(8) on the exterior side of the ß-strand, possibly through contacts to Lys(18) Thus GAGs significantly modulate sCT fibrillation in a pH-dependent manner by interacting with both monomeric and aggregated sCT.


Subject(s)
Calcitonin/chemistry , Fish Proteins/chemistry , Glycosaminoglycans/chemistry , Protein Aggregates , Salmon , Animals , Hydrogen-Ion Concentration , Nuclear Magnetic Resonance, Biomolecular
12.
J Biol Chem ; 291(51): 26540-26553, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-27784787

ABSTRACT

Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea. It has antimicrobial properties and disrupts the ordered structure of amyloid fibrils involved in human disease. The antimicrobial effect of EGCG against the opportunistic pathogen Pseudomonas aeruginosa has been shown to involve disruption of quorum sensing (QS). Functional amyloid fibrils in P. aeruginosa (Fap) are able to bind and retain quorum-sensing molecules, suggesting that EGCG interferes with QS through structural remodeling of amyloid fibrils. Here we show that EGCG inhibits the ability of Fap to form fibrils; instead, EGCG stabilizes protein oligomers. Existing fibrils are remodeled by EGCG into non-amyloid aggregates. This fibril remodeling increases the binding of pyocyanin, demonstrating a mechanism by which EGCG can affect the QS function of functional amyloid. EGCG reduced the amyloid-specific fluorescent thioflavin T signal in P. aeruginosa biofilms at concentrations known to exert an antimicrobial effect. Nanoindentation studies showed that EGCG reduced the stiffness of biofilm containing Fap fibrils but not in biofilm with little Fap. In a combination treatment with EGCG and tobramycin, EGCG had a moderate effect on the minimum bactericidal eradication concentration against wild-type P. aeruginosa biofilms, whereas EGCG had a more pronounced effect when Fap was overexpressed. Our results provide a direct molecular explanation for the ability of EGCG to disrupt P. aeruginosa QS and modify its biofilm and strengthens the case for EGCG as a candidate in multidrug treatment of persistent biofilm infections.


Subject(s)
Amyloid/biosynthesis , Bacterial Proteins/biosynthesis , Biofilms/drug effects , Catechin/analogs & derivatives , Drug Resistance, Bacterial/drug effects , Gene Expression Regulation, Bacterial/drug effects , Pseudomonas aeruginosa/physiology , Tobramycin/pharmacology , Benzothiazoles , Biofilms/growth & development , Catechin/pharmacology , Humans , Pseudomonas Infections/drug therapy , Pseudomonas Infections/metabolism , Thiazoles/pharmacology
13.
Biochemistry ; 55(16): 2344-57, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27042751

ABSTRACT

Lattice corneal dystrophy is associated with painful recurrent corneal erosions and amyloid corneal opacities induced by transforming growth factor ß-induced protein (TGFBIp) that impairs vision. The exact mechanism of amyloid fibril formation in corneal dystrophy is unknown but has been associated with destabilizing mutations in the fourth fasciclin 1 (Fas1-4) domain of TGFBIp. The green tea compound epigallocatechin gallate (EGCG) has been found to inhibit fibril formation of various amyloidogenic proteins in vitro. In this study, we investigated the effect of EGCG as a potential treatment in lattice corneal dystrophy (LCD) using Fas1-4 with the naturally occurring LCD-inducing A546T mutation. A fewfold molar excess of EGCG was found to inhibit fibril formation in vitro by directing Fas1-4 A546T into stable EGCG-bound protein oligomers. Incubation with 2 molar equiv of EGCG led to a 4-fold reduction in the aggregates' membrane disruptive potential, potentially indicative of significantly lower cytotoxicity with regard to corneal erosions. EGCG did not induce oligomer formation by wild-type Fas1-4, indicating that treatment with EGCG would not interfere with the native function of the wild-type protein. Addition of EGCG to 10-day-old fibrils reduced fibril content in a dose-dependent manner. Proteinase K was found to reduce the light scattering of nontreated fibrils by 31% but reduced that of fibrils treated with 8 molar equiv of EGCG by 85%. This suggests that EGCG remodeling of fibril structure can facilitate aggregate removal by endogenous proteases and thus alleviate the protein deposits' light scattering symptoms.


Subject(s)
Amyloid/metabolism , Antioxidants/pharmacology , Catechin/analogs & derivatives , Extracellular Matrix Proteins/metabolism , Transforming Growth Factor beta/metabolism , Amyloid/chemistry , Catechin/pharmacology , Cell Membrane Permeability/drug effects , Corneal Dystrophies, Hereditary/drug therapy , Corneal Dystrophies, Hereditary/metabolism , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/ultrastructure , Humans , Liposomes/metabolism , Peptide Hydrolases/metabolism , Protein Domains , Protein Multimerization/drug effects , Proteolysis/drug effects , Transforming Growth Factor beta/chemistry
14.
Biochemistry ; 55(26): 3674-84, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27305175

ABSTRACT

The zinc binding hormone pituitary human prolactin (hPRL) is stored in secretory granules of specialized cells in an aggregated form. Glycosaminoglycans (GAGs) are anionic polysaccharides commonly associated with secretory granules, indicating their involvement in granule formation. Here we, for the first time, study the impact of GAGs in combination with Zn(2+) on the reversible hPRL aggregation across the pH range of 7.4-5.5. Zn(2+) alone causes hPRL aggregation at pH 7.4, while aggregation between pH 7.4 and 5.5 requires both Zn(2+) and GAGs. GAGs alone cause hPRL aggregation below pH 5.5. Comprehensive thermal stability investigations show that hPRL is particularly destabilized toward thermal denaturation at pH 5.5 and that GAGs increasingly destabilize hPRL at decreasing pH values. We propose that Zn(2+) causes hPRL aggregation through low-affinity Zn(2+) binding sites on hPRL with GAGs facilitating Zn(2+) binding by neutralizing repulsive positive charges of hPRL in the acidic environments of the TGN and mature secretory granules. In a manner independent of the aggregation-causing agent(s), the different hPRL aggregates show very similar secondary structure and amorphous morphology. We speculate that this may be a recognizable sorting signal in the formation of hPRL granular vesicles.


Subject(s)
Glycosaminoglycans/chemistry , Prolactin/chemistry , Protein Aggregates , Zinc/chemistry , Binding Sites , Circular Dichroism , Cytoplasmic Granules/metabolism , Glycosaminoglycans/metabolism , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Prolactin/metabolism , Protein Binding , Secretory Vesicles/metabolism , Spectroscopy, Fourier Transform Infrared , Zinc/metabolism
15.
J Biol Chem ; 290(33): 20590-600, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26109065

ABSTRACT

Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold.


Subject(s)
Amyloid/physiology , Methanosarcinales/physiology , Amyloid/biosynthesis , Methanosarcinales/metabolism , Microscopy, Electron, Transmission , Tandem Mass Spectrometry
16.
J Biol Chem ; 290(10): 6457-69, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25586180

ABSTRACT

The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats.


Subject(s)
Amyloid/chemistry , Biofilms , Pseudomonas aeruginosa/chemistry , Quorum Sensing/genetics , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , Amyloid/metabolism , Gene Expression Regulation, Bacterial , Humans , Protein Folding , Pseudomonas aeruginosa/genetics
17.
Biochim Biophys Acta ; 1854(12): 1890-1897, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26284878

ABSTRACT

Applying fibril-forming peptides in nanomaterial design is still challenged by the difficulties in understanding and controlling how fibrils form. The present work investigates the influence of motional restriction on peptide fibrillation. We use cyclotriphosphazene and cyclodextrin as templates to make conjugates of the fibril-forming core of human islet amyloid polypeptide. Attachment of the peptide to the templates resulted in multimers containing six peptide fragments at different positions. ThT fluorescence, CD and FTIR spectroscopy, and AFM and TEM imaging reveal that in both conjugates the peptide retained its fibrillating properties and formed fibrils. However, the conjugate fibrils formed more rapidly than the free peptide and were long and thin, as opposed to the thick and twisted morphology of the intact peptide. Thus the motional restrictions introduced by the scaffold modulate the structure of the fibrils but do not impede the actual fibrillation process.


Subject(s)
Amyloidogenic Proteins/chemistry , Peptide Fragments/chemistry , Microscopy, Electron, Transmission
18.
Int J Syst Evol Microbiol ; 66(9): 3737-3742, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27380907

ABSTRACT

A new aerobic marine bacterium, strain S3431, was isolated from swab samples of an unidentified polychaete near Canal Concepción, Chile. This strain was thought to represent a new taxon within the genus Pseudoalteromonas. Although DNA-DNA reassociation values showed less than 70 % genomic DNA relatedness to established Pseudoalteromonas type strains, it shared 78 % DNA-DNA relatedness with Alteromonas fuliginea DSM 15748 (=KMM 216) (Romanenko et al., 1994). A. fuliginea has later been considered a heterotypic synonym of Pseudoalteromonas citrea(Ivanova et al., 1998). Relatedness between strains S3431, A. fuliginea DSM 15748 and the type strain P. citrea LMG 12323T was therefore studied. Physiological traits and genomic information were shared at a high level by strains S3431 and DSM 15748, but not between these and P. citrea LMG 12323T. There was only approximately 20 % DNA-DNA relatedness between P. citrea LMG 12323T and strains S3431 and DSM 15748. Based on the available phylogenetic and phenotypic data, the reclassification of A. fuliginea DSM 15748 (Romanenko et al., 1995) → Pseudoalteromonas citrea(Ivanova et al., 1998) as Pseudoalteromonas fuligineacomb. nov. is proposed, and strain S3431 should be assigned to this new species. The name Pseudoalteromonas fuliginea is proposed with KMM 216T (=DSM 15748T=CIP 105339T) as the type strain.


Subject(s)
Alteromonas/classification , Phylogeny , Polychaeta/microbiology , Pseudoalteromonas/classification , Animals , Bacterial Typing Techniques , Chile , DNA, Bacterial/genetics , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
19.
Biochemistry ; 54(19): 2943-56, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25910219

ABSTRACT

Mutations in the transforming growth factor beta-induced (TGFBI) gene result in a group of hereditary diseases of the cornea that are collectively known as TGFBI corneal dystrophies. These mutations translate into amino acid substitutions mainly within the fourth fasciclin 1 domain (FAS1-4) of the transforming growth factor beta-induced protein (TGFBIp) and cause either amyloid or nonamyloid protein aggregates in the anterior and central parts of the cornea, depending on the mutation. The A546T substitution in TGFBIp causes lattice corneal dystrophy (LCD), which manifests as amyloid-type aggregates in the corneal stroma. We previously showed that the A546T substitution renders TGFBIp and the FAS1-4 domain thermodynamically less stable compared with the wild-type (WT) protein, and the mutant FAS1-4 is prone to amyloid formation in vitro. In the present study, we identified the core of A546T FAS1-4 amyloid fibrils. Significantly, we identified the Y571-R588 region of TGFBIp, which we previously found to be enriched in amyloid deposits in LCD patients. We further found that the Y571-R588 peptide seeded fibrillation of A546T FAS1-4, and, more importantly, we demonstrated that native TGFBIp aggregates in the presence of fibrils formed by the core peptide. Collectively, these data suggest an involvement of the Y571-R588 peptide in LCD pathophysiology.


Subject(s)
Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/metabolism , Corneal Dystrophies, Hereditary/metabolism , Corneal Stroma/metabolism , Humans , Microscopy, Electron, Transmission , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
J Biol Chem ; 289(31): 21299-310, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24907278

ABSTRACT

Oligomeric species of various proteins are linked to the pathogenesis of different neurodegenerative disorders. Consequently, there is intense focus on the discovery of novel inhibitors, e.g. small molecules and antibodies, to inhibit the formation and block the toxicity of oligomers. In Parkinson disease, the protein α-synuclein (αSN) forms cytotoxic oligomers. The flavonoid epigallocatechin gallate (EGCG) has previously been shown to redirect the aggregation of αSN monomers and remodel αSN amyloid fibrils into disordered oligomers. Here, we dissect EGCG's mechanism of action. EGCG inhibits the ability of preformed oligomers to permeabilize vesicles and induce cytotoxicity in a rat brain cell line. However, EGCG does not affect oligomer size distribution or secondary structure. Rather, EGCG immobilizes the C-terminal region and moderately reduces the degree of binding of oligomers to membranes. We interpret our data to mean that the oligomer acts by destabilizing the membrane rather than by direct pore formation. This suggests that reduction (but not complete abolition) of the membrane affinity of the oligomer is sufficient to prevent cytotoxicity.


Subject(s)
Biopolymers/antagonists & inhibitors , Catechin/analogs & derivatives , alpha-Synuclein/antagonists & inhibitors , Biopolymers/metabolism , Biopolymers/toxicity , Calorimetry, Differential Scanning , Catechin/pharmacology , Cell Membrane Permeability , Circular Dichroism , In Vitro Techniques , Microscopy, Confocal , Microscopy, Electron, Transmission , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL