Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
2.
Cell ; 158(1): 185-197, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24954535

ABSTRACT

Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle , Cell Cycle Proteins , Cell Line, Tumor , DNA Replication , DNA-Binding Proteins/metabolism , Disease Models, Animal , E2F Transcription Factors/metabolism , Humans , Mice , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins/metabolism , TEA Domain Transcription Factors , Transcription Factors/metabolism , YAP-Signaling Proteins , ras Proteins/metabolism
3.
Cell ; 148(5): 896-907, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22341455

ABSTRACT

To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-ß/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities.


Subject(s)
Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Telomerase/metabolism , Telomere/metabolism , Animals , Bone Neoplasms/secondary , Cell Line, Tumor , Crosses, Genetic , DNA Copy Number Variations , Disease Models, Animal , Female , Genomic Instability , Humans , Male , Mice , Tumor Suppressor Protein p53/metabolism
4.
Cell ; 149(3): 656-70, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22541435

ABSTRACT

Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC.


Subject(s)
Adenocarcinoma/metabolism , Disease Models, Animal , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Humans , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Transcription, Genetic
5.
Genes Dev ; 31(4): 370-382, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28289141

ABSTRACT

Human colorectal cancer (CRC) is a major cause of cancer mortality and frequently harbors activating mutations in the KRAS gene. To understand the role of oncogenic KRAS in CRC, we engineered a mouse model of metastatic CRC that harbors an inducible oncogenic Kras allele (Krasmut ) and conditional null alleles of Apc and Trp53 (iKAP). The iKAP model recapitulates tumor progression from adenoma through metastases. Whole-exome sequencing revealed that the Krasmut allele was heterogenous in primary tumors yet homogenous in metastases, a pattern consistent with activated Krasmut signaling being a driver of progression to metastasis. System-level and functional analyses revealed the TGF-ß pathway as a key mediator of Krasmut -driven invasiveness. Genetic extinction of Krasmut resulted in specific elimination of the Krasmut subpopulation in primary and metastatic tumors, leading to apoptotic elimination of advanced invasive and metastatic disease. This faithful CRC model provides genetic evidence that Krasmut drives CRC invasion and maintenance of metastases.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/physiopathology , Neoplasm Invasiveness/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Genotype , Humans , Mice , Mice, Inbred C57BL , Mutation , Neoplasm Metastasis , Proto-Oncogene Proteins p21(ras)/genetics , Transcriptome , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
6.
Blood ; 135(15): 1232-1243, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32040549

ABSTRACT

T-cell-mediated approaches have shown promise in myeloma treatment. However, there are currently a limited number of specific myeloma antigens that can be targeted, and multiple myeloma (MM) remains an incurable disease. G-protein-coupled receptor class 5 member D (GPRC5D) is expressed in MM and smoldering MM patient plasma cells. Here, we demonstrate that GPRC5D protein is present on the surface of MM cells and describe JNJ-64407564, a GPRC5DxCD3 bispecific antibody that recruits CD3+ T cells to GPRC5D+ MM cells and induces killing of GPRC5D+ cells. In vitro, JNJ-64407564 induced specific cytotoxicity of GPRC5D+ cells with concomitant T-cell activation and also killed plasma cells in MM patient samples ex vivo. JNJ-64407564 can recruit T cells and induce tumor regression in GPRC5D+ MM murine models, which coincide with T-cell infiltration at the tumor site. This antibody is also able to induce cytotoxicity of patient primary MM cells from bone marrow, which is the natural site of this disease. GPRC5D is a promising surface antigen for MM immunotherapy, and JNJ-64407564 is currently being evaluated in a phase 1 clinical trial in patients with relapsed or refractory MM (NCT03399799).


Subject(s)
Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Multiple Myeloma/therapy , Receptors, G-Protein-Coupled/immunology , T-Lymphocytes/drug effects , Animals , Antibodies, Bispecific/immunology , Antineoplastic Agents, Immunological/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic/drug effects , Female , Humans , Immunotherapy , Mice, Inbred BALB C , Multiple Myeloma/immunology , T-Lymphocytes/immunology
7.
Nature ; 470(7333): 269-73, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21289624

ABSTRACT

Effective clinical management of prostate cancer (PCA) has been challenged by significant intratumoural heterogeneity on the genomic and pathological levels and limited understanding of the genetic elements governing disease progression. Here, we exploited the experimental merits of the mouse to test the hypothesis that pathways constraining progression might be activated in indolent Pten-null mouse prostate tumours and that inactivation of such progression barriers in mice would engender a metastasis-prone condition. Comparative transcriptomic and canonical pathway analyses, followed by biochemical confirmation, of normal prostate epithelium versus poorly progressive Pten-null prostate cancers revealed robust activation of the TGFß/BMP-SMAD4 signalling axis. The functional relevance of SMAD4 was further supported by emergence of invasive, metastatic and lethal prostate cancers with 100% penetrance upon genetic deletion of Smad4 in the Pten-null mouse prostate. Pathological and molecular analysis as well as transcriptomic knowledge-based pathway profiling of emerging tumours identified cell proliferation and invasion as two cardinal tumour biological features in the metastatic Smad4/Pten-null PCA model. Follow-on pathological and functional assessment confirmed cyclin D1 and SPP1 as key mediators of these biological processes, which together with PTEN and SMAD4, form a four-gene signature that is prognostic of prostate-specific antigen (PSA) biochemical recurrence and lethal metastasis in human PCA. This model-informed progression analysis, together with genetic, functional and translational studies, establishes SMAD4 as a key regulator of PCA progression in mice and humans.


Subject(s)
Disease Progression , Neoplasm Metastasis/pathology , Prostatic Neoplasms/pathology , Smad4 Protein/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor/physiology , Humans , Lung Neoplasms/secondary , Lymphatic Metastasis , Male , Mice , Mice, Transgenic , Models, Biological , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Osteopontin/genetics , Osteopontin/metabolism , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Penetrance , Prognosis , Prostate/metabolism , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Smad4 Protein/deficiency , Smad4 Protein/genetics , Transforming Growth Factor beta
8.
Genes Dev ; 23(1): 24-36, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19136624

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by the deregulation of the hedgehog signaling pathway. The Sonic Hedgehog ligand (Shh), absent in the normal pancreas, is highly expressed in pancreatic tumors and is sufficient to induce neoplastic precursor lesions in mouse models. We investigated the mechanism of Shh signaling in PDAC carcinogenesis by genetically ablating the canonical bottleneck of hedgehog signaling, the transmembrane protein Smoothened (Smo), in the pancreatic epithelium of PDAC-susceptible mice. We report that multistage development of PDAC tumors is not affected by the deletion of Smo in the pancreas, demonstrating that autocrine Shh-Ptch-Smo signaling is not required in pancreatic ductal cells for PDAC progression. However, the expression of Gli target genes is maintained in Smo-negative ducts, implicating alternative means of regulating Gli transcription in the neoplastic ductal epithelium. In PDAC tumor cells, we find that Gli transcription is decoupled from upstream Shh-Ptch-Smo signaling and is regulated by TGF-beta and KRAS, and we show that Gli1 is required both for survival and for the KRAS-mediated transformed phenotype of cultured PDAC cancer cells.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Cell Transformation, Neoplastic/metabolism , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/metabolism , Pancreatic Ducts/metabolism , Pancreatic Neoplasms/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line , Cell Survival , Cells, Cultured , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Mice , Pancreatic Ducts/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Smoothened Receptor , Transforming Growth Factor beta/metabolism , Zinc Finger Protein GLI1
9.
Nature ; 455(7216): 1129-33, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18948956

ABSTRACT

Glioblastoma (GBM) is a highly lethal brain tumour presenting as one of two subtypes with distinct clinical histories and molecular profiles. The primary GBM subtype presents acutely as a high-grade disease that typically harbours mutations in EGFR, PTEN and INK4A/ARF (also known as CDKN2A), and the secondary GBM subtype evolves from the slow progression of a low-grade disease that classically possesses PDGF and TP53 events. Here we show that concomitant central nervous system (CNS)-specific deletion of p53 and Pten in the mouse CNS generates a penetrant acute-onset high-grade malignant glioma phenotype with notable clinical, pathological and molecular resemblance to primary GBM in humans. This genetic observation prompted TP53 and PTEN mutational analysis in human primary GBM, demonstrating unexpectedly frequent inactivating mutations of TP53 as well as the expected PTEN mutations. Integrated transcriptomic profiling, in silico promoter analysis and functional studies of murine neural stem cells (NSCs) established that dual, but not singular, inactivation of p53 and Pten promotes an undifferentiated state with high renewal potential and drives increased Myc protein levels and its associated signature. Functional studies validated increased Myc activity as a potent contributor to the impaired differentiation and enhanced renewal of NSCs doubly null for p53 and Pten (p53(-/-) Pten(-/-)) as well as tumour neurospheres (TNSs) derived from this model. Myc also serves to maintain robust tumorigenic potential of p53(-/-) Pten(-/-) TNSs. These murine modelling studies, together with confirmatory transcriptomic/promoter studies in human primary GBM, validate a pathogenetic role of a common tumour suppressor mutation profile in human primary GBM and establish Myc as an important target for cooperative actions of p53 and Pten in the regulation of normal and malignant stem/progenitor cell differentiation, self-renewal and tumorigenic potential.


Subject(s)
Brain Neoplasms/pathology , Cell Differentiation , Glioma/pathology , Neoplastic Stem Cells/pathology , Neurons/pathology , PTEN Phosphohydrolase/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Brain Neoplasms/genetics , Cell Proliferation , Gene Expression Regulation , Glioblastoma/genetics , Glioblastoma/pathology , Glioma/genetics , Humans , Immunohistochemistry , Mice , Neoplastic Stem Cells/metabolism , Neurons/metabolism , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Tumor Suppressor Protein p53/genetics
10.
Proc Natl Acad Sci U S A ; 108(49): E1275-84, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22084065

ABSTRACT

Preclinical trials in mice represent a critical step in the evaluation of experimental therapeutics. Genetically engineered mouse models (GEMMs) represent a promising platform for the evaluation of drugs, particularly those targeting the tumor microenvironment. We evaluated sunitinib, an angiogenesis inhibitor that targets VEGF and PDGF receptor signaling, in two GEMMs of pancreatic cancer. Sunitinib did not reduce tumor burden in pancreatic ductal adenocarcinoma (PDAC), whereas tumor burden was reduced in the pancreatic neuroendocrine tumor (PNET) model, the latter results confirming and extending previous studies. To explore the basis for the lack of pathologic response in PDAC, we used noninvasive microbubble contrast-enhanced ultrasound imaging, which revealed that sunitinib reduced blood flow both in PDAC and in PNET, concomitant with a reduction in vessel density; nevertheless, PDAC tumors continued to grow, whereas PNET were growth impaired. These results parallel the response in humans, where sunitinib recently garnered FDA and European approval in PNET, whereas two antiangiogenic drugs failed to demonstrate efficacy in PDAC clinical trials. The demonstration of on-target activity but with discordant benefit in the PDAC and PNET GEMMs illustrates the potential value of linked preclinical and clinical trials.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Indoles/therapeutic use , Neuroendocrine Tumors/drug therapy , Pancreatic Neoplasms/drug therapy , Pyrroles/therapeutic use , Animals , Antigens, CD34/metabolism , Blood Flow Velocity/drug effects , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/genetics , Clinical Trials as Topic , Contrast Media , Drug Evaluation, Preclinical , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microbubbles , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/genetics , Pancreas/blood supply , Pancreas/drug effects , Pancreas/metabolism , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Prognosis , Receptors, Platelet-Derived Growth Factor/metabolism , Sunitinib , Treatment Outcome , Tumor Burden/drug effects , Ultrasonography
11.
Proc Natl Acad Sci U S A ; 108(10): 4006-11, 2011 Mar 08.
Article in English | MEDLINE | ID: mdl-21330551

ABSTRACT

We report that the dominant human missense mutations G303E and G296S in GATA4, a cardiac-specific transcription factor gene, cause atrioventricular septal defects and valve abnormalities by disrupting a signaling cascade involved in endocardial cushion development. These GATA4 missense mutations, but not a mutation causing secundum atrial septal defects (S52F), demonstrated impaired protein interactions with SMAD4, a transcription factor required for canonical bone morphogenetic protein/transforming growth factor-ß (BMP/TGF-ß) signaling. Gata4 and Smad4 genetically interact in vivo: atrioventricular septal defects result from endothelial-specific Gata4 and Smad4 compound haploinsufficiency. Endothelial-specific knockout of Smad4 caused an absence of valve-forming activity: Smad4-deficient endocardium was associated with acellular endocardial cushions, absent epithelial-to-mesenchymal transformation, reduced endocardial proliferation, and loss of Id2 expression in valve-forming regions. We show that Gata4 and Smad4 cooperatively activated the Id2 promoter, that human GATA4 mutations abrogated this activity, and that Id2 deficiency in mice could cause atrioventricular septal defects. We suggest that one determinant of the phenotypic spectrum caused by human GATA4 mutations is differential effects on GATA4/SMAD4 interactions required for endocardial cushion development.


Subject(s)
GATA4 Transcription Factor/genetics , Heart Valves/embryology , Smad4 Protein/genetics , Animals , Bone Morphogenetic Proteins/metabolism , Epithelial-Mesenchymal Transition , Female , Humans , Male , Mice , Morphogenesis , Mutation , Pedigree , Promoter Regions, Genetic , Transforming Growth Factor beta/metabolism
12.
Clin Pharmacol Ther ; 115(5): 1075-1084, 2024 May.
Article in English | MEDLINE | ID: mdl-38159266

ABSTRACT

Janus kinase (JAK) signaling has been implicated in human inflammatory diseases, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. Lorpucitinib (JNJ-64251330) is an oral, small molecule, pan-JAK inhibitor. Unlike systemic JAK antagonists, lorpucitinib was found to have enteric (gut)-selective properties, providing possible applications in diseases of the human gastrointestinal tract. Here, lorpucitinib was evaluated in a phase I, two-part, dosing study (NCT04552197) to assess pharmacokinetics, pharmacodynamic biomarkers, and safety in healthy participants. In part 1, 24 participants were randomized to 1 of 4 treatment arms receiving either lorpucitinib (30 mg daily, 30 mg every 12 hours (q12h), or 75 mg q12h) or tofacitinib (5 mg q12h) for 5 days. Part 2 was a food-effect study in which 12 participants received a single 75-mg dose of lorpucitinib under either fasting or fed conditions. In part 1, plasma and gut tissue concentrations of lorpucitinib showed approximately dose-proportional increases. At all doses, lorpucitinib concentrations were significantly higher (392- to 1928-fold) in the gut mucosal biopsies vs. the corresponding plasma samples, demonstrating high enteric selectivity and significantly exceeding both the tissue concentrations (> 200-fold) and tissue/plasma ratios observed with tofacitinib. JAK inhibition in biopsies was confirmed via reduction in pSTAT-3 levels. In part 2, lorpucitinib plasma concentrations were detectable but at low levels, with no statistical differences in PK parameters between the fed and fasted groups. Lorpucitinib was safe and well-tolerated, and the data may be useful in designing studies to evaluate lorpucitinib in patients with JAK/STAT-driven gastrointestinal diseases.


Subject(s)
Arthritis, Rheumatoid , Inflammatory Bowel Diseases , Janus Kinase Inhibitors , Humans , Janus Kinase Inhibitors/adverse effects , Healthy Volunteers , Arthritis, Rheumatoid/drug therapy , Fasting , Inflammatory Bowel Diseases/drug therapy
13.
PLoS One ; 17(4): e0267046, 2022.
Article in English | MEDLINE | ID: mdl-35452470

ABSTRACT

The enzyme spermine oxidase (SMOX) is involved in polyamine catabolism and converts spermine to spermidine. The enzymatic reaction generates reactive hydrogen peroxide and aldehydes as by-products that can damage DNA and other biomolecules. Increased expression of SMOX is frequently found in lung, prostate, colon, stomach and liver cancer models, and the enzyme also appears to play a role in neuronal dysfunction and vascular retinopathy. Because of growing evidence that links SMOX activity with DNA damage, inflammation, and carcinogenesis, the enzyme has come into view as a potential drug target. A major challenge in cancer research is the lack of characterization of antibodies used for identification of target proteins. To overcome this limitation, we generated a panel of high-affinity rabbit monoclonal antibodies against various SMOX epitopes and selected antibodies for use in immunoblotting, SMOX quantification assays, immunofluorescence microscopy and immunohistochemistry. Immunohistochemistry analysis with the antibody SMAB10 in normal and transformed tissues confirms that SMOX is upregulated in several different cancers. Together, the panel of antibodies generated herein adds to the toolbox of high-quality reagents to study SMOX biology and to facilitate SMOX drug development.


Subject(s)
Antineoplastic Agents, Immunological , Neoplasms , Oxidoreductases Acting on CH-NH Group Donors , Antibodies, Monoclonal , Humans , Immunohistochemistry , Male , Oxidoreductases Acting on CH-NH Group Donors/genetics , Spermine/metabolism , Polyamine Oxidase
14.
Proc Natl Acad Sci U S A ; 105(11): 4168-72, 2008 Mar 18.
Article in English | MEDLINE | ID: mdl-18332431

ABSTRACT

The Sin3-histone deacetylase (HDAC) corepressor complex is conserved from yeast to humans. Mammals possess two highly related Sin3 proteins, mSin3A and mSin3B, which serve as scaffolds tethering HDAC enzymatic activity, and numerous sequence-specific transcription factors to enable local chromatin regulation at specific gene targets. Despite broad overlapping expression of mSin3A and mSin3B, mSin3A is cell-essential and vital for early embryonic development. Here, genetic disruption of mSin3B reveals a very different phenotype characterized by the survival of cultured cells and lethality at late stages of embryonic development with defective differentiation of multiple lineages-phenotypes that are strikingly reminiscent of those associated with loss of retinoblastoma family members or E2F transcriptional repressors. Additionally, we observe that, whereas mSin3B(-/-) cells cycle normally under standard growth conditions, they show an impaired ability to exit the cell cycle with limiting growth factors. Correspondingly, mSin3B interacts physically with the promoters of known E2F target genes, and its deficiency is associated with derepression of these gene targets in vivo. Together, these results reveal a critical role for mSin3B in the control of cell cycle exit and terminal differentiation in mammals and establish contrasting roles for the mSin3 proteins in the growth and development of specific lineages.


Subject(s)
Cell Cycle , Cell Differentiation , Chromatin/genetics , Repressor Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Lineage , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Mice , Repressor Proteins/genetics , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription, Genetic/genetics
15.
Proc Natl Acad Sci U S A ; 105(49): 19372-7, 2008 Dec 09.
Article in English | MEDLINE | ID: mdl-19050074

ABSTRACT

Pancreas ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically presents as advanced, unresectable disease. This invasive tendency, coupled with intrinsic resistance to standard therapies and genome instability, are major contributors to poor long-term survival. The genetic elements governing the invasive propensity of PDAC have not been well elucidated. Here, in the course of validating resident genes in highly recurrent and focal amplifications in PDAC, we have identified Rio Kinase 3 (RIOK3) as an amplified gene that alters cytoskeletal architecture as well as promotes pancreatic ductal cell migration and invasion. We determined that RIOK3 promotes its invasive activities through activation of the small G protein, Rac. This genomic and functional link to Rac signaling prompted a genome wide survey of other components of the Rho family network, revealing p21 Activated Kinase 4 (PAK4) as another amplified gene in PDAC tumors and cell lines. Like RIOK3, PAK4 promotes pancreas ductal cell motility and invasion. Together, the genomic and functional profiles establish the Rho family GTP-binding proteins as integral to the hallmark invasive nature of this lethal disease.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Pancreatic Ducts/physiology , Pancreatic Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , p21-Activated Kinases/genetics , rho GTP-Binding Proteins/genetics , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Transformed , Cell Movement/physiology , Gene Expression Regulation, Neoplastic , Genomics , Humans , Mice , Mice, Nude , Neoplasm Invasiveness , Pancreatic Ducts/cytology , Pancreatic Neoplasms/pathology , Phenotype , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , p21-Activated Kinases/metabolism , rho GTP-Binding Proteins/metabolism
16.
Blood Adv ; 4(5): 906-919, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32150609

ABSTRACT

CD33 is expressed in 90% of patients with acute myeloid leukemia (AML), and its extracellular portion consists of a V domain and a C2 domain. A recent study showed that a single nucleotide polymorphism (SNP), rs12459419 (C > T), results in the reduced expression of V domain-containing CD33 and limited efficacy of V domain-binding anti-CD33 antibodies. We developed JNJ-67571244, a novel human bispecific antibody capable of binding to the C2 domain of CD33 and to CD3, to induce T-cell recruitment and CD33+ tumor cell cytotoxicity independently of their SNP genotype status. JNJ-67571244 specifically binds to CD33-expressing target cells and induces cytotoxicity of CD33+ AML cell lines in vitro along with T-cell activation and cytokine release. JNJ-67571244 also exhibited statistically significant antitumor activity in vivo in established disseminated and subcutaneous mouse models of human AML. Furthermore, this antibody depletes CD33+ blasts in AML patient blood samples with concurrent T-cell activation. JNJ-67571244 also cross-reacts with cynomolgus monkey CD33 and CD3, and dosing of JNJ-67571244 in cynomolgus monkeys resulted in T-cell activation, transient cytokine release, and sustained reduction in CD33+ leukocyte populations. JNJ-67571244 was well tolerated in cynomolgus monkeys up to 30 mg/kg. Lastly, JNJ-67571244 mediated efficient cytotoxicity of cell lines and primary samples regardless of their SNP genotype status, suggesting a potential therapeutic benefit over other V-binding antibodies. JNJ-67571244 is currently in phase 1 clinical trials in patients with relapsed/refractory AML and high-risk myelodysplastic syndrome.


Subject(s)
Leukemia, Myeloid, Acute , T-Lymphocytes , Animals , C2 Domains , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Macaca fascicularis , Sialic Acid Binding Ig-like Lectin 3/genetics , T-Lymphocytes/metabolism
17.
Nat Commun ; 8: 15965, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28671190

ABSTRACT

Pancreatic ductal adenocarcinoma is a notoriously difficult-to-treat cancer and patients are in need of novel therapies. We have shown previously that these tumours have altered metabolic requirements, making them highly reliant on a number of adaptations including a non-canonical glutamine (Gln) metabolic pathway and that inhibition of downstream components of Gln metabolism leads to a decrease in tumour growth. Here we test whether recently developed inhibitors of glutaminase (GLS), which mediates an early step in Gln metabolism, represent a viable therapeutic strategy. We show that despite marked early effects on in vitro proliferation caused by GLS inhibition, pancreatic cancer cells have adaptive metabolic networks that sustain proliferation in vitro and in vivo. We use an integrated metabolomic and proteomic platform to understand this adaptive response and thereby design rational combinatorial approaches. We demonstrate that pancreatic cancer metabolism is adaptive and that targeting Gln metabolism in combination with these adaptive responses may yield clinical benefits for patients.


Subject(s)
Glutamine/metabolism , Metabolic Networks and Pathways , Pancreatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Female , Glutaminase/genetics , Glutaminase/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/physiopathology , Proteomics , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
18.
Cancer Discov ; 4(8): 905-13, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24875860

ABSTRACT

UNLABELLED: Pancreatic ductal adenocarcinoma is refractory to available therapies. We have previously shown that these tumors have elevated autophagy and that inhibition of autophagy leads to decreased tumor growth. Using an autochthonous model of pancreatic cancer driven by oncogenic Kras and the stochastic LOH of Trp53, we demonstrate that although genetic ablation of autophagy in the pancreas leads to increased tumor initiation, these premalignant lesions are impaired in their ability to progress to invasive cancer, leading to prolonged survival. In addition, mouse pancreatic cancer cell lines with differing p53 status are all sensitive to pharmacologic and genetic inhibition of autophagy. Finally, a mouse preclinical trial using cohorts of genetically characterized patient-derived xenografts treated with hydroxychloroquine showed responses across the collection of tumors. Together, our data support the critical role of autophagy in pancreatic cancer and show that inhibition of autophagy may have clinical utility in the treatment of these cancers, independent of p53 status. SIGNIFICANCE: Recently, a mouse model with embryonic homozygous Trp53 deletion showed paradoxical effects of autophagy inhibition. We used a mouse model with Trp53 LOH (similar to human tumors), tumor cell lines, and patient-derived xenografts to show that p53 status does not affect response to autophagy inhibition. These findings have important implications on ongoing clinical trials.


Subject(s)
Autophagy/genetics , Cell Transformation, Neoplastic/genetics , Pancreatic Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Animals , Disease Models, Animal , Humans , Loss of Heterozygosity , Mice , Pancreatic Neoplasms/pathology , Xenograft Model Antitumor Assays
19.
Cancer Discov ; 3(3): 294-307, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23274911

ABSTRACT

N-RAS is one member of a family of oncoproteins that are commonly mutated in cancer. Activating mutations in NRAS occur in a subset of colorectal cancers, but little is known about how the mutant protein contributes to the onset and progression of the disease. Using genetically engineered mice, we find that mutant N-RAS strongly promotes tumorigenesis in the context of inflammation. The protumorigenic nature of mutant N-RAS is related to its antiapoptotic function, which is mediated by activation of a noncanonical mitogen-activated protein kinase pathway that signals through STAT3. As a result, inhibition of MAP-ERK kinase selectively induces apoptosis in autochthonous colonic tumors expressing mutant N-RAS. The translational significance of this finding is highlighted by our observation that NRAS mutation correlates with a less favorable clinical outcome for patients with colorectal cancer. These data show for the first time the important role that N-RAS plays in colorectal cancer.


Subject(s)
Apoptosis/genetics , Colitis/genetics , Colitis/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ras Proteins/genetics , Animals , Cell Line, Tumor , Colitis/chemically induced , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/prevention & control , Disease Progression , Extracellular Signal-Regulated MAP Kinases/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Genes, ras , Humans , MAP Kinase Signaling System/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Proto-Oncogene Proteins c-raf/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , ras Proteins/metabolism
20.
Cancer Res ; 73(9): 2718-36, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23610450

ABSTRACT

Animal models, particularly mouse models, play a central role in the study of the etiology, prevention, and treatment of human prostate cancer. While tissue culture models are extremely useful in understanding the biology of prostate cancer, they cannot recapitulate the complex cellular interactions within the tumor microenvironment that play a key role in cancer initiation and progression. The National Cancer Institute (NCI) Mouse Models of Human Cancers Consortium convened a group of human and veterinary pathologists to review the current animal models of prostate cancer and make recommendations about the pathologic analysis of these models. More than 40 different models with 439 samples were reviewed, including genetically engineered mouse models, xenograft, rat, and canine models. Numerous relevant models have been developed over the past 15 years, and each approach has strengths and weaknesses. Analysis of multiple genetically engineered models has shown that reactive stroma formation is present in all the models developing invasive carcinomas. In addition, numerous models with multiple genetic alterations display aggressive phenotypes characterized by sarcomatoid carcinomas and metastases, which is presumably a histologic manifestation of epithelial-mesenchymal transition. The significant progress in development of improved models of prostate cancer has already accelerated our understanding of the complex biology of prostate cancer and promises to enhance development of new approaches to prevention, detection, and treatment of this common malignancy.


Subject(s)
Disease Models, Animal , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Adenocarcinoma/metabolism , Animals , Consensus , Disease Progression , Genetic Engineering/methods , Humans , Male , Mice , Neoplasm Metastasis , Neoplasm Transplantation , New York , Oncogenes , Rats , Societies, Medical
SELECTION OF CITATIONS
SEARCH DETAIL