Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Bioorg Med Chem ; 25(6): 1963-1975, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28238512

ABSTRACT

Multipronged approach was used to synthesize a library of diverse C-8 cyclopentyl hypoxanthine analogs from a common intermediate III. Several potent and selective compounds were identified and evaluated for pharmacokinetic (PK) properties in Wistar rats. One of the compounds 14 with acceptable PK parameters was selected for testing in in vivo primary acute diuresis model. The compound demonstrated significant diuretic activity in this model.


Subject(s)
Adenosine A1 Receptor Antagonists/chemistry , Adenosine A1 Receptor Antagonists/pharmacology , Hypoxanthines/chemistry , Hypoxanthines/pharmacology , Adenosine A1 Receptor Antagonists/chemical synthesis , Adenosine A1 Receptor Antagonists/pharmacokinetics , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Chromatography, Liquid , Drug Design , HEK293 Cells , Humans , Hypoxanthines/chemical synthesis , Hypoxanthines/pharmacokinetics , Male , Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Radioligand Assay , Rats , Rats, Wistar
2.
Vaccines (Basel) ; 11(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36992099

ABSTRACT

The limited availability of effective treatment against SARS-CoV-2 infection is a major challenge in managing COVID-19. This scenario has augmented the need for repurposing anti-virals for COVID-19 mitigation. In this report, the anti-SARS-CoV-2 potential of anti-HCV drugs such as daclatasvir (DCV) or ledipasvir (LDP) in combination with sofosbuvir (SOF) was evaluated. The binding mode and higher affinity of these molecules with RNA-dependent-RNA-polymerase of SARS-CoV-2 were apparent by computational analysis. In vitro anti-SARS-CoV-2 activity depicted that SOF/DCV and SOF/LDP combination has IC50 of 1.8 and 2.0 µM, respectively, comparable to remdesivir, an approved drug for COVID-19. Furthermore, the clinical trial was conducted in 183 mild COVID-19 patients for 14 days to check the efficacy and safety of SOF/DCV and SOF/LDP compared to standard of care (SOC) in a parallel-group, hybrid, individually randomized, controlled clinical study. The primary outcomes of the study suggested no significant difference in negativity after 3, 7 and 14 days in both treatments. None of the patients displayed any worsening in the disease severity, and no mortality was observed in the study. Although, the post hoc exploratory analysis indicated significant normalization of the pulse rate showed in SOF/DCV and SOF/LDP treatment vs. SOC. The current study highlights the limitations of bench side models in predicting the clinical efficacy of drugs that are planned for repurposing.

3.
Bioorg Med Chem Lett ; 22(13): 4341-7, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22658862

ABSTRACT

Long chain L-2-hydroxy acid oxidase 2 (Hao2) is a peroxisomal enzyme expressed in the kidney and the liver. Hao2 was identified as a candidate gene for blood pressure (BP) quantitative trait locus (QTL) but the identity of its physiological substrate and its role in vivo remains largely unknown. To define a pharmacological role of this gene product, we report the development of selective inhibitors of Hao2. We identified pyrazole carboxylic acid hits 1 and 2 from screening of a compound library. Lead optimization of these hits led to the discovery of 15-XV and 15-XXXII as potent and selective inhibitors of rat Hao2. This report details the structure activity relationship of the pyrazole carboxylic acids as specific inhibitors of Hao2.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Carboxylic Acids/chemistry , Enzyme Inhibitors/chemistry , Pyrazoles/chemistry , Thiophenes/chemistry , Alcohol Oxidoreductases/metabolism , Animals , Binding Sites , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacokinetics , Computer Simulation , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Humans , Kidney/enzymology , Kidney/metabolism , Liver/enzymology , Liver/metabolism , Protein Structure, Tertiary , Pyrazoles/chemical synthesis , Pyrazoles/therapeutic use , Rats , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/therapeutic use
4.
Bioorg Med Chem Lett ; 21(12): 3596-602, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21571530

ABSTRACT

GPR91, a 7TM G-Protein-Coupled Receptor, has been recently deorphanized with succinic acid as its endogenous ligand. Current literature indicates that GPR91 plays role in various pathophysiology including renal hypertension, autoimmune disease and retinal angiogenesis. Starting from a small molecule high-throughput screening hit 1 (hGPR91 IC(50): 0.8 µM)-originally synthesized in Merck for Bradykinin B(1) Receptor (BK(1)R) program, systematic structure-activity relationship study led us to discover potent and selective hGPR91 antagonists e.g. 2c, 4c, and 5 g (IC(50): 7-35 nM; >1000 fold selective against hGPR99, a closest related GPCR; >100 fold selective in Drug Matrix screening). This initial work also led to identification of two structurally distinct and orally bio-available lead compounds: 5g (%F: 26) and 7e (IC(50): 180 nM; >100 fold selective against hGPR99; %F: 87). A rat pharmacodynamic assay was developed to characterize the antagonists in vivo using succinate induced increase in blood pressure. Using two representative antagonists, 2c and 4c, the GPR91 target engagement was subsequently demonstrated using the designed pharmacodynamic assay.


Subject(s)
Drug Discovery , Receptors, G-Protein-Coupled/antagonists & inhibitors , Small Molecule Libraries/chemical synthesis , Administration, Oral , Animals , Inhibitory Concentration 50 , Male , Molecular Structure , Rats , Rats, Wistar , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
5.
J Biomol Struct Dyn ; 39(9): 3099-3114, 2021 06.
Article in English | MEDLINE | ID: mdl-32329408

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts going on in the drug discovery to control the SARS-CoV-2 viral infection. The main protease (MPro) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. To understand the structural evolution of MPro, we have performed phylogenetic and Sequence Similarity Network analysis, that depicted divergence of Coronaviridae MPro in five clusters specific to viral hosts. This clustering was corroborated with the comparison of MPro structures. Furthermore, it has been observed that backbone and binding site conformations are conserved despite variation in some of the residues. These attributes can be exploited to repurpose available viral protease inhibitors against SARS-CoV-2 MPro. In agreement with this, we performed screening of ∼7100 molecules including active ingredients present in the Ayurvedic anti-tussive medicines, anti-viral phytochemicals and synthetic anti-virals against SARS-CoV-2 MPro as the primary target. We identified several natural molecules like δ-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A, afzelin, biorobin, hesperidin and phyllaemblicin B that strongly binds to SARS-CoV-2 MPro. Intrestingly, these molecules also showed strong binding with other potential targets of SARS-CoV-2 infection like viral receptor human angiotensin-converting enzyme 2 (hACE-2) and RNA dependent RNA polymerase (RdRp). We anticipate that our approach for identification of multi-target-directed ligand will provide new avenues for drug discovery against SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Humans , Ligands , Pandemics , Peptide Hydrolases , Phylogeny , Protease Inhibitors/pharmacology , SARS-CoV-2
6.
J Recept Signal Transduct Res ; 29(2): 100-6, 2009.
Article in English | MEDLINE | ID: mdl-19288301

ABSTRACT

In modern drug discovery, numerous assay formats are available to screen and quantitate receptor-ligand interactions. Radioactive assays are "gold standard" because they are fast, easy, and reproducible; however, they are hazardous, produce radioactive waste, require special lab conditions, and are expensive on a large scale. Thus, it provides a lot of importance to the "mix & measure" assays that have an optical readout. Fluorescence techniques are likely to be among the most important detection approaches used for high throughput screening due to their high sensitivity and amenability to automation. The aim of the present study was to determine the functional antagonistic affinities of standard muscarinic antagonists in CHO cells over expressing m1, m3, and m5 receptors and to compare them with the respective binding affinities. This study was further extended to elucidate that Ca+2 measurement assays can serve as a functional screening tool for GPCRs. For this purpose, standard muscarinic receptor antagonists, namely, tolterodine, oxybutynin, and atropine were used. We determined and compared the IC50 values of these three standard inhibitors in fura 2 AM loaded m1, m3, and m5 overexpressing CHO cells and in radioligand binding assay. Both the assays exhibited comparable rank order potencies of the standard inhibitors. This study suggests that Ca+2 mobilization assays can be an alternate to radioligand binding assays.


Subject(s)
Calcium/analysis , Fluorometry/methods , Muscarinic Antagonists/pharmacology , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M5/antagonists & inhibitors , Animals , Atropine/pharmacology , Benzhydryl Compounds/pharmacology , CHO Cells , Cresols/pharmacology , Cricetinae , Cricetulus , Fluorescence , Fluorescent Dyes/pharmacology , Fluorometry/instrumentation , Fura-2/analogs & derivatives , Fura-2/pharmacology , Humans , Mandelic Acids/pharmacology , Phenylpropanolamine/pharmacology , Radioligand Assay , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/metabolism , Receptor, Muscarinic M5/metabolism , Scopolamine Derivatives/antagonists & inhibitors , Scopolamine Derivatives/metabolism , Tolterodine Tartrate , Transfection
8.
Eur J Pharmacol ; 561(1-3): 189-93, 2007 Apr 30.
Article in English | MEDLINE | ID: mdl-17320854

ABSTRACT

We have investigated the role of peripheral 5-hydroxytryptamine 1A (5-HT(1A)) receptors and their probable up-regulation in rat model of partial bladder outlet obstruction. Bladder outlet obstruction was induced in adult female rats, hypertropic bladders were harvested after 6 weeks and isometric contractions of bladder strips were recorded. A marked spontaneous activity of the bladder was observed in obstructed bladder strips compared to control strips. The effect of alpha(1A/1D)-adrenergic antagonist, tamsulosin, was observed to be inhibitory on the spontaneous contractions albeit at higher doses (10, 30 and 100 nM). As tamsulosin at higher doses also has high affinity for 5-HT(1A) receptors, the role of peripheral 5-HT(1A) receptors in overactive bladder was hypothesized. 8-hydroxy-2-(di-n-propylamino) tetralin [8-OH-DPAT], a selective 5-HT(1A) receptor agonist, dose-dependently induced significant contractions in the obstructed bladder strips, compared to control bladders. N-[2-[4-(2-methoxyphenyl) piperazin-1-yl]ethyl]-N-pyridin-2-yl-cyclohexanecarboxamide dihydrochloride (WAY-100635), a selective 5-HT(1A) receptor antagonist, competitively antagonized the contractile response to 8-OH-DPAT in obstructed bladder strips in a dose-dependent manner. Tamsulosin at a higher dose was also observed to antagonize the responses to 8-OH-DPAT. Taken together, these observations suggest the involvement of peripheral 5-HT(1A) receptors in detrusor over activity associated with bladder outlet obstruction in female rats.


Subject(s)
Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Urinary Bladder Neck Obstruction/physiopathology , Urinary Bladder, Overactive/physiopathology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Adrenergic alpha-Antagonists/administration & dosage , Adrenergic alpha-Antagonists/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Hypertrophy , Piperazines/pharmacology , Pyridines/pharmacology , Rats , Rats, Wistar , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Tamsulosin , Up-Regulation/physiology
9.
Eur J Pharmacol ; 572(2-3): 207-12, 2007 Oct 31.
Article in English | MEDLINE | ID: mdl-17610864

ABSTRACT

The aim of this study was to describe a new experimental animal model for simultaneous measurement of carbachol-induced increase in intravesical pressure and salivary secretion in rabbits. Further, we also compared the in vivo potency and urinary bladder versus salivary gland selectivity profiles of Oxybutynin, Tolterodine, Solifenacin and Darifenacin. The intravesical pressure and salivary secretion were evoked by intra-arterial injection of carbachol (1.5 microg/kg). The carbachol-induced increase in intravesical pressure and salivation was simultaneously recorded before and after increasing doses of test drugs administered intravenously. The basal mean changes in intravesical pressure and salivation subsequent to carbachol administration were in the range of 6.7-7.5 mm Hg and 0.5-0.7 g respectively. Repeated administration of vehicle did not elicit any appreciable changes in intravesical pressure and salivary secretion to carbachol administration from the basal values till 3 h. All the test drugs exhibited a dose-dependent inhibition of carbachol-induced increase in intravesical pressure and salivary secretion. Darifenacin demonstrated a greater potency compared to other muscarinic receptor antagonists for inhibiting carbachol-induced increase in intravesical pressure. It also exhibited functional selectivity for the urinary bladder versus salivary gland. In contrast, Oxybutynin was functionally more selective in inhibiting carbachol-induced increase in salivary secretion. The observed urinary bladder versus salivary selectivity values were 0.6+/-0.2, 1.1+/-0.2, 1.7+/-0.5, and 2.3+/-0.5 for Oxybutynin, Tolterodine, Solifenacin and Darifenacin respectively. These results suggest that the functional selectivity of muscarinic receptor antagonists between urinary bladder and salivary glands can be readily detected in this model. Thus rabbits may represent a useful animal model for evaluating putative bladder selective muscarinic receptor antagonists for the treatment of overactive bladder.


Subject(s)
Cholinergic Antagonists/pharmacology , Salivary Glands/drug effects , Urinary Bladder/drug effects , Anesthesia , Animals , Benzhydryl Compounds/pharmacology , Benzofurans/pharmacology , Carbachol/administration & dosage , Carbachol/pharmacology , Cresols/pharmacology , Injections, Intra-Arterial , Male , Mandelic Acids/pharmacology , Phenylpropanolamine/pharmacology , Pressure , Pyrrolidines/pharmacology , Quinuclidines/pharmacology , Rabbits , Salivary Glands/metabolism , Solifenacin Succinate , Tetrahydroisoquinolines/pharmacology , Tolterodine Tartrate , Urinary Bladder/physiology
10.
ACS Med Chem Lett ; 8(8): 835-840, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28835798

ABSTRACT

Adenosine A2A receptor (A2AAdoR) antagonism is a nondopaminergic approach to Parkinson's disease treatment that is under development. Earlier we had reported the therapeutic potential of 7-methoxy-4-morpholino-benzothiazole derivatives as A2AAdoR antagonists. We herein described a novel series of [1,2,4]triazolo[5,1-f]purin-2-one derivatives that displays functional antagonism of the A2A receptor with a high degree of selectivity over A1, A2B, and A3 receptors. Compounds from this new scaffold resulted in the discovery of highly potent, selective, stable, and moderate brain penetrating compound 33. Compound 33 endowed with satisfactory in vitro and in vivo pharmacokinetics properties. Compound 33 demonstrated robust oral efficacies in two commonly used models of Parkinson's disease (haloperidol-induced catalepsy and 6-OHDA lesioned rat models) and depression (TST and FST mice models).

11.
Eur J Med Chem ; 127: 986-996, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27842891

ABSTRACT

A2BAdoR is a low affinity adenosine receptor that functions by Gs mediated elevation of cAMP and subsequent downstream signaling. The receptor has been implicated in lung inflammatory disorders like COPD and asthma. Several potent and selective A2BAdoR antagonists have been reported in literature, however most of the compounds suffer from poor pharmacokinetic profile. Therefore, with the aim to identify novel, potent and selective A2BAdoR antagonists with improved pharmacokinetic properties, we first explored more constrained form of MRS-1754 (4). To improve the metabolic stability, several linker modifications were attempted as replacement of amide linker along with different phenyl or other heteroaryls between C8 position of xanthine head group and terminal phenyl ring. SAR optimization resulted in identification of two novel A2BAdoR antagonists, 8-{1-[5-Oxo-1-(4-trifluoromethyl-phenyl)-pyrrolidin-3-ylmethyl]-1H-pyrazol-4-yl}-1,3-dipropyl-xanthine (31) and 8-(1-{2-Oxo-2-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-ethyl}-1H-pyrazol-4-yl)-1,3-dipropyl-xanthine (65), with high binding affinity (Ki = 1 and 1.5 nM, respectively) and selectivity for A2BAdoR with very good functional potency of 0.9 nM and 4 nM, respectively. Compound 31 and 65 also displayed good pharmacokinetic properties in mice with 27% and 65% oral bioavailability respectively. When evaluated in in vivo mice model of asthma, compound 65 also inhibited airway inflammation and airway reactivity in ovalbumin induced allergic asthma at 3 mpk dose.


Subject(s)
Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacology , Drug Design , Receptor, Adenosine A2B/metabolism , Xanthine/chemical synthesis , Xanthine/pharmacology , Adenosine A2 Receptor Antagonists/chemistry , Animals , Brain/drug effects , Brain/metabolism , Chemistry Techniques, Synthetic , Male , Mice , Structure-Activity Relationship , Xanthine/chemistry
12.
Eur J Med Chem ; 133: 268-286, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28390958

ABSTRACT

Glucokinase activators (GKAs) are among the emerging drug candidates for the treatment of type 2 diabetes (T2D). Despite effective blood glucose lowering in clinical trials, many pan-GKAs "acting both in pancreas and liver" have been discontinued from clinical development mainly because of their potential to cause hypoglycemia. Pan-GKAs over sensitize pancreatic GK, resulting in insulin secretion even at sub-normoglycemic level which might be a possible explanation for hypoglycemia. An alternative approach to minimize the risk of hypoglycemia is to use liver-directed GKAs, which are reported to be advancing well in clinical development. Here, we report the discovery and structure-activity relationship (SAR) studies on a novel 2-phenoxy-acetamide series with the aim of identifying a liver-directed GKA. Incorporation of a carboxylic acid moiety as an active hepatocyte uptake recognizing element at appropriate position of 2-phenoxy-acetamide core led to the identification of 26, a potent GKA with predominant liver-directed pharmacokinetics in mice. Compound 26 on oral administration significantly reduced blood glucose levels during an oral glucose tolerance test (oGTT) performed in diet-induced obese (DIO) mice, while showing no sign of hypoglycemia in normal C57 mice over a 10-fold dose range, even when dosed at fasted condition. Together, these data demonstrate a liver-directed GKA has beneficial effect on glucose homeostasis with reduced risk of hypoglycemia.


Subject(s)
Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Glucokinase/metabolism , Hyperglycemia/drug therapy , Hypoglycemia/chemically induced , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Animals , Blood Glucose/metabolism , Cells, Cultured , Enzyme Activators/adverse effects , Enzyme Activators/pharmacokinetics , Humans , Hyperglycemia/blood , Hyperglycemia/metabolism , Hypoglycemia/blood , Hypoglycemia/metabolism , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacokinetics , Liver/drug effects , Liver/metabolism , Mice, Obese , Molecular Docking Simulation , Rats
13.
Eur J Med Chem ; 134: 218-229, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28415011

ABSTRACT

Adenosine induces bronchial hyperresponsiveness and inflammation in asthmatics through activation of A2B adenosine receptor (A2BAdoR). Selective antagonists have been shown to attenuate airway reactivity and improve inflammatory conditions in pre-clinical studies. Hence, the identification of novel, potent and selective A2BAdoR antagonist may be beneficial for the potential treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD). Towards this effort, we explored several prop-2-ynylated C8-aryl or heteroaryl substitutions on xanthine chemotype and found that 1-prop-2-ynyl-1H-pyrazol-4-yl moiety was better tolerated at the C8 position. Compound 59, exhibited binding affinity (Ki) of 62 nM but was non-selective for A2BAdoR over other AdoRs. Incorporation of substituted phenyl on the terminal acetylene increased the binding affinity (Ki) significantly to <10 nM. Various substitutions on terminal phenyl group and different alkyl substitutions on N-1 and N-3 were explored to improve the potency, selectivity for A2BAdoR and the solubility. In general, compounds with meta-substituted phenyl provided better selectivity for A2BAdoR compared to that of para-substituted analogs. Substitutions such as basic amines like pyrrolidine, piperidine, piperazine or cycloalkyls with polar group were tried on terminal acetylene, keeping in mind the poor solubility of xanthine analogs in general. However, these substitutions led to a decrease in affinity compared to compound 59. Subsequent SAR optimization resulted in identification of compound 46 with high human A2BAdoR affinity (Ki = 13 nM), selectivity against other AdoR subtypes and with good pharmacokinetic properties. It was found to be a potent functional A2BAdoR antagonist with a Ki of 8 nM in cAMP assay in hA2B-HEK293 cells and an IC50 of 107 nM in IL6 assay in NIH-3T3 cells. Docking study was performed to rationalize the observed affinity data. Structure-activity relationship (SAR) studies also led to identification of compound 36 as a potent A2BAdoR antagonist with Ki of 1.8 nM in cAMP assay and good aqueous solubility of 529 µM at neutral pH. Compound 46 was further tested for in vivo efficacy and found to be efficacious in ovalbumin-induced allergic asthma model in mice.


Subject(s)
Adenosine A2 Receptor Antagonists/chemistry , Adenosine A2 Receptor Antagonists/therapeutic use , Asthma/drug therapy , Receptor, Adenosine A2B/metabolism , Xanthine/chemistry , Xanthine/therapeutic use , Adenosine A2 Receptor Antagonists/metabolism , Adenosine A2 Receptor Antagonists/pharmacokinetics , Animals , Asthma/chemically induced , Asthma/metabolism , Dogs , Drug Design , Hep G2 Cells , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Docking Simulation , Ovalbumin , Rats , Receptor, Adenosine A2B/chemistry , Xanthine/metabolism , Xanthine/pharmacokinetics
14.
Atherosclerosis ; 187(2): 221-37, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16386260

ABSTRACT

Intermittent claudication (IC) is defined by leg muscle pain, cramping and fatigue brought on by ambulation/exercise; relieved on rest; and caused by inadequate blood supply and is the primary symptom of peripheral arterial disease (PAD). PAD has a detrimental effect on the quality of life. PAD is a debilitating atherosclerotic disease of the lower limbs and is associated with an increased risk of cardiovascular morbidity and mortality. IC is an extremely important marker of atheroma. Up to 60% patients with IC have significant underlying coronary and/or carotid disease and 40% of all patients suffering from IC die or suffer a stroke within 5 years of presentation. The therapeutic intervention of IC essentially aims at providing symptomatic relief and reducing the systemic cardiovascular complications. Although exercise therapy is one of the most efficacious conservative treatments for claudication, the pharmacotherapeutic goals can be best achieved through an increase in the walking capacity to improve quality of life and a decrease in rates of amputation. In the development of treatment for IC, an aggressive non-pharmacological intervention and pharmacological treatment of the risk factors associated with IC are considered. In the next 2 years, the results of major trials of drugs that stabilize and regress atherosclerosis such as statins and angiotensin converting enzyme inhibitors, and anti-platelet agents, recombinant growth factors and immune modulators will be available for IC. Levocarnitine (l-carnitine) and a derivative, propionyl levocarnitine, are emerging agents that increase the pain-free walking and improve the quality of life in IC patients by working at the metabolism and exercise performance of ischemic muscles. This article provides a comprehensive review of the pathophysiology involved, diagnosis of IC and existing and emerging pharmacotherapies with rationale for their use in its treatment.


Subject(s)
Intermittent Claudication , Platelet Aggregation Inhibitors/therapeutic use , Vasodilator Agents/therapeutic use , Humans , Intermittent Claudication/drug therapy , Intermittent Claudication/epidemiology , Intermittent Claudication/physiopathology , Prevalence , Risk Factors
15.
Prog Lipid Res ; 42(1): 37-50, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12467639

ABSTRACT

Therapeutic success of statins has distinctly established inhibition of de novo hepatic cholesterol synthesis as an effective approach to lower plasma LDL-cholesterol, the major risk factor for atherosclerosis and coronary heart disease. Statins inhibit HMG CoA reductase, a rate limiting enzyme which catalyses conversion of HMG CoA to mevalonic acid. However, in this process statins also inhibit the synthesis of several non-sterols e.g. dolichols and ubiquinone, which are implicated in side effects observed with statins. This prompted many major pharmaceutical companies in 1990s to target selective cholesterol synthesis beyond farnesyl pyrophosphate. The enzymes squalene synthetase, squalene epoxidase and oxidosqualene cyclase were identified as potential targets. Though inhibitors of these enzymes have been developed, till date no compound has been reported to have entered clinical trials. We evaluated the literature to understand merits and demerits of pursuing squalene epoxidase as a target for hypocholesterolemic drug development. Squalene epoxidase catalyses the conversion of squalene to 2,3-oxidosqualene. Although it has been extensively exploited for antifungal drug development, it has received little attention as a target for hypocholesterolemic drug design. This enzyme though recognized in the early 1970s was cloned 25 years later. This enzyme is an attractive step for pharmacotherapeutic intervention as it is the secondary rate limiting enzyme and blocking cholesterol synthesis at this step may result in accumulation of only squalene which is known to be stable and non toxic. Synthesis of several potent, orally bioavailable inhibitors of squalene epoxidase has been reported from Yamonuchi, Pierre Fabre and Banyu pharmaceuticals. Preclinical studies with these inhibitors have clearly demonstrated the potential of squalene epoxidase inhibitors as hypocholesterolemic agents. Hypochloesterolemic therapy is intended for prolonged duration and safety is an important determinant in clinical success. Lack of clinical trials, despite demonstrated preclinical efficacy by oral route, prompted us to evaluate safety concerns with squalene epoxidase inhibitors. In dogs, NB-598, a potent competitive squalene epoxidase inhibitor has been reported to exhibit signs of dermatitis like toxicity which has been attributed by some reviewers to accumulation of squalene in skin cells. Tellurium, a non-competitive inhibitor of squalene epoxidase has been associated with neuropathy in weanling rats. On the other hand, increased plasma levels of squalene in animals and humans (such as occurring subsequent to dietary olive oil or squalene administration) are safe and associated with beneficial effect such as chemoprevention and hypocholesterolemic activity. In our view, high circulating levels of squalene epoxidase inhibitor may be responsible for dermatitis and neuropathy. Competitive inhibition and pharmacokinetic profile minimizing circulating plasma levels (e.g. by hepatic sequestration and high first pass metabolism) could be important determinants in circumventing safety concerns of squalene epoxidase inhibitors. Recently, cholesterol-lowering effect of green tea has been attributed to potent squalene epoxidase inhibition, which can be consumed in much higher doses without toxicological effect. These facts strengthen optimism for developing clinically safe squalene epoxidase inhibitors. Put in perspective squalene epoxidase appears to be undervalued target which merits attention for development of better hypocholesterolemic drugs.


Subject(s)
Anticholesteremic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hypercholesterolemia/enzymology , Oxygenases/antagonists & inhibitors , Anticholesteremic Agents/adverse effects , Drug Design , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hypercholesterolemia/drug therapy , Oxygenases/physiology , Squalene Monooxygenase
16.
Bioorg Med Chem Lett ; 2005 Nov 03.
Article in English | MEDLINE | ID: mdl-16275082

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

17.
Pain ; 36(2): 263-269, 1989 Feb.
Article in English | MEDLINE | ID: mdl-2919107

ABSTRACT

Apomorphine, when administered intracerebroventricularly (0.05 mg/kg) to rats, increased tail-flick latency (a spinal nociceptive response). However, intraperitoneal administration at doses of 1, 3 and 10 mg/kg had no effect, probably because of a tonic supraspinal inhibitory influence on spinal dopaminergic neurones involved in segmental nociceptive processes. Depending on the doses administered, intraperitoneal administration of apomorphine exhibited opposite effects on antinociceptive activity of morphine. Pretreatment with a low dose of apomorphine (1 mg/kg) attenuated, whereas, a high dose (10 mg/kg) potentiated morphine-induced antinociception. Dopamine antagonists, in doses that preferentially block autoreceptors, i.e., haloperidol (0.1 mg/kg, i.p.) and (-)-sulpiride (5 mg/kg, i.p.), antagonised the attenuation of morphine antinociception by a low dose of apomorphine, while treatment with a high dose of haloperidol (1 mg/kg, i.p.) and pimozide (1.25 mg/kg, i.p.) completely antagonised the potentiating effect of a high dose of apomorphine on the antinociceptive activity of morphine. The attenuation of morphine antinociception thus appears to be due to decreased dopaminergic activity as a result of preferential dopamine autoreceptor stimulation by a low dose of apomorphine, whereas potentiation with a high dose of apomorphine is caused by enhanced dopaminergic activity via postsynaptic receptor stimulation.


Subject(s)
Apomorphine/pharmacology , Morphine/antagonists & inhibitors , Nociceptors/drug effects , Animals , Cerebral Ventricles/physiology , Dopamine Antagonists , Dose-Response Relationship, Drug , Drug Interactions , Drug Synergism , Injections, Intraventricular , Male , Morphine/pharmacology , Pain Measurement , Rats , Receptors, Dopamine/drug effects , Receptors, Dopamine/metabolism , Synapses/metabolism
18.
Eur J Pharmacol ; 652(1-3): 157-63, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-20540938

ABSTRACT

Dipeptidyl peptidase IV (DPP-IV) inhibiton is a well recognized approach to treat Type 2 diabetes. RBx-0597 is a novel DPP-IV inhibitor discovered in our laboratory. The aim of the present study was to characterize the pharmacological profiles of RBx-0597 in vitro and in vivo as an anti-diabetic agent. RBx-0597 inhibited human, mouse and rat plasma DPP-IV activity with IC(50) values of 32, 31 and 39nM respectively. RBx-0597 exhibited significant selectivity over dipeptidyl peptidase8 (DPP-8), dipeptidyl peptidase9 (DPP-9) (150-300 fold) and other proline-specific proteases (>200-2000 fold). Kinetic analysis revealed that RBx-0597 is a competitive and slow binding DPP-IV inhibitor. In ob/ob mice, RBx-0597 (10mg/kg) inhibited plasma DPP-IV activity upto 50% 8h post-dose and showed a dose-dependent glucose excursion. RBx-0597 (10mg/kg) showed a significant glucose lowering effect (∼25% AUC of △ blood glucose) which was sustained till 12h, significantly increased the active glucagon-like peptide-1(GLP-1) and insulin levels. It showed a favourable pharmacokinetic profile (plasma clearance:174ml/min/kg; C(max) 292ng/ml; T(1/2) 0.28h; T(max) 0.75h and V(ss) 4.13L/kg) in Wistar rats with the oral bioavailability (F(oral)) of 65%. In summary, the present studies indicate that RBx-0597 is a novel DPP-IV inhibitor with anti-hyperglycemic effect and a promising candidate for further development as a drug for the treatment of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Dipeptidyl Peptidase 4/blood , Dipeptidyl-Peptidase IV Inhibitors/administration & dosage , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Glucose Tolerance Test , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin/therapeutic use , Kinetics , Male , Mice , Mice, Obese , Rats , Rats, Wistar
19.
ACS Med Chem Lett ; 2(12): 919-23, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-24900281

ABSTRACT

l-2-Hydroxy acid oxidase (Hao2) is a peroxisomal enzyme with predominant expression in the liver and kidney. Hao2 was recently identified as a candidate gene for blood pressure quantitative trait locus in rats. To investigate a pharmacological role of Hao2 in the management of blood pressure, selective Hao2 inhibitors were developed. Optimization of screening hits 1 and 2 led to the discovery of compounds 3 and 4 as potent and selective rat Hao2 inhibitors with pharmacokinetic properties suitable for in vivo studies in rats. Treatment with compound 3 or 4 resulted in a significant reduction or attenuation of blood pressure in an established or developing model of hypertension, deoxycorticosterone acetate-treated rats. This is the first report demonstrating a pharmacological benefit of selective Hao2 inhibitors in a relevant model of hypertension.

20.
Eur J Pharmacol ; 607(1-3): 213-9, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19239913

ABSTRACT

The present study, investigates the effect of RBx 6198, 2-{3-[4-(2-Isopropoxy-phenyl)-piperazin-1-yl]-propyl}-3a, 4, 7, 7a-tetrahydro-isoindole-1, 3,-dione, a novel alpha(1)-adrenoceptor antagonist, in both in vitro and in vivo test systems. RBx 6198 is a potent (nanomolar affinity) alpha(1A)-adrenoceptor antagonist with demonstrable uroselectivity in anaesthesized dog model. In radioligand binding studies using human recombinant receptors, RBx 6198 exhibited high selectivity (approximately 50 fold) for the alpha(1A)-adrenoceptor subtype as compared to alpha(1B)-adrenoceptor subtype. In order to assess tissue selectivity, the antagonistic effect of RBx 6198 on the phenylephrine induced contractile response of isolated rat prostate, spleen and aorta was characterized. RBx 6198 was 8 fold more potent in inhibiting phenylephrine-evoked contractions of isolated tissues compared to tamsulosin. However, the compound was non-selective for alpha(1A) vs. alpha(1D)-adrenoceptor like tamsulosin. In anaesthetized beagle dogs RBx 6198 suppressed the intraurethral pressure response to phenylephrine to a greater extent than the mean arterial pressure response thereby demonstrating uroselectivity consistent with in vitro binding and functional data. RBx 6198 was 6.4 fold more uroselective as compared to tamsulosin after i.v. route dose administration. Taken together all results from preclinical studies, it is suggested that RBx 6198 is a novel alpha(1)-adrenoceptor antagonist that exhibited improved pharmacological profile over tamsulosin in both in vitro and in vivo.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists , Adrenergic alpha-Antagonists/pharmacology , Phthalimides/pharmacology , Piperazines/pharmacology , Prostatic Hyperplasia/drug therapy , Adrenergic alpha-Antagonists/administration & dosage , Animals , Aorta/drug effects , Aorta/metabolism , CHO Cells , Cricetinae , Cricetulus , Dogs , Humans , Injections, Intravenous , Male , Muscle Contraction/drug effects , Phenylephrine , Phthalimides/administration & dosage , Piperazines/administration & dosage , Prostate/drug effects , Prostate/metabolism , Prostatic Hyperplasia/physiopathology , Protein Binding , Radioligand Assay , Rats , Rats, Wistar , Spleen/drug effects , Spleen/metabolism , Sulfonamides/pharmacology , Tamsulosin
SELECTION OF CITATIONS
SEARCH DETAIL