Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Toxicol Rep ; 11: 221-232, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37719200

ABSTRACT

The incidence of colorectal cancer (CRC) among young people has been on the rise for the past four decades and its underlying causes are only just starting to be uncovered. Recent studies suggest that consuming ultra-processed foods and pro-inflammatory diets may be contributing factors. The increase in the use of synthetic food colors in such foods over the past 40 years, including the common synthetic food dye Allura Red AC (Red 40), coincides with the rise of early-onset colorectal cancer (EOCRC). As these ultra-processed foods are particularly appealing to children, there is a growing concern about the impact of synthetic food dyes on the development of CRC. Our study aimed to investigate the effects of Red 40 on DNA damage, the microbiome, and colonic inflammation. Despite a lack of prior research, high levels of human exposure to pro-inflammatory foods containing Red 40 highlight the urgency of exploring this issue. Our results show that Red 40 damages DNA both in vitro and in vivo and that consumption of Red 40 in the presence of a high-fat diet for 10 months leads to dysbiosis and low-grade colonic inflammation in mice. This evidence supports the hypothesis that Red 40 is a dangerous compound that dysregulates key players involved in the development of EOCRC.

2.
Oncotarget ; 8(1): 228-237, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27974688

ABSTRACT

Ulcerative colitis (UC) is a chronic lifelong inflammatory disorder of the colon, which, while untreated, has a relapsing and remitting course with increasing risk of progression toward colorectal cancer. Current medical treatment strategies of UC mostly focus on inhibition of the signs and symptoms of UC to induce remission and prevent relapse of disease activity, minimizing the impact on quality of life, but not affecting the cause of disease. To date, however, there is no single reliable treatment agent and/or strategy capable of effectively controlling colitis progression throughout the patient's life without side effects, remission, or resistance. Taking into consideration an urgent need for the new colitis treatment strategies, targets and/or modulators of inflammation, we have tested current and prospective compounds for colitis treatment and directly compared their anti-colitis potency using a dextran sulfate sodium (DSS) mouse model of colitis. We have introduced a composite score - a multi-parameters comparison tool - to assess biological potency of different compounds.


Subject(s)
Colitis/drug therapy , Colitis/etiology , Disease Models, Animal , Drug Discovery , Animals , Biomarkers , Body Weight/drug effects , Colitis/metabolism , Dextran Sulfate/adverse effects , Male , Mice , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL