Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
PLoS Genet ; 20(3): e1010719, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457441

ABSTRACT

DNA methylation is a key regulator of eukaryote genomes, and is of particular relevance in the regulation of gene expression on the sex chromosomes, with a key role in dosage compensation in mammalian XY systems. In the case of birds, dosage compensation is largely absent, with it being restricted to two small Male Hyper-Methylated (MHM) regions on the Z chromosome. To investigate how variation in DNA methylation is regulated on the Z chromosome we utilised a wild x domestic advanced intercross in the chicken, with both hypothalamic methylomes and transcriptomes assayed in 124 individuals. The relatively large numbers of individuals allowed us to identify additional genomic MHM regions on the Z chromosome that were significantly differentially methylated between the sexes. These regions appear to down-regulate local gene expression in males, but not remove it entirely (unlike the lncRNAs identified in the initial MHM regions). These MHM regions were further tested and the most balanced genes appear to show decreased expression in males, whilst methylation appeared to be far more correlated with gene expression in the less balanced, as compared to the most balanced genes. In addition, quantitative trait loci (QTL) that regulate variation in methylation on the Z chromosome, and those loci that regulate methylation on the autosomes that derive from the Z chromosome were mapped. Trans-effect hotspots were also identified that were based on the autosomes but affected the Z, and also one that was based on the Z chromosome but that affected both autosomal and sex chromosome DNA methylation regulation. We show that both cis and trans loci that originate from the Z chromosome never exhibit an interaction with sex, whereas trans loci originating from the autosomes but affecting the Z chromosome always display such an interaction. Our results highlight how additional MHM regions are actually present on the Z chromosome, and they appear to have smaller-scale effects on gene expression in males. Quantitative variation in methylation is also regulated both from the autosomes to the Z chromosome, and from the Z chromosome to the autosomes.


Subject(s)
Chickens , Sex Chromosomes , Animals , Male , Chickens/genetics , DNA Methylation/genetics , Dosage Compensation, Genetic , Genome , Mammals/genetics , Sex Chromosomes/genetics
2.
BMC Biol ; 18(1): 78, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32605573

ABSTRACT

BACKGROUND: Sex chromosomes have evolved independently multiple times in eukaryotes and are therefore considered a prime example of convergent genome evolution. Sex chromosomes are known to emerge after recombination is halted between a homologous pair of chromosomes, and this leads to a range of non-adaptive modifications causing gradual degeneration and gene loss on the sex-limited chromosome. However, the proximal causes of recombination suppression and the pace at which degeneration subsequently occurs remain unclear. RESULTS: Here, we use long- and short-read single-molecule sequencing approaches to assemble and annotate a draft genome of the basket willow, Salix viminalis, a species with a female heterogametic system at the earliest stages of sex chromosome emergence. Our single-molecule approach allowed us to phase the emerging Z and W haplotypes in a female, and we detected very low levels of Z/W single-nucleotide divergence in the non-recombining region. Linked-read sequencing of the same female and an additional male (ZZ) revealed the presence of two evolutionary strata supported by both divergence between the Z and W haplotypes and by haplotype phylogenetic trees. Gene order is still largely conserved between the Z and W homologs, although the W-linked region contains genes involved in cytokinin signaling regulation that are not syntenic with the Z homolog. Furthermore, we find no support across multiple lines of evidence for inversions, which have long been assumed to halt recombination between the sex chromosomes. CONCLUSIONS: Our data suggest that selection against recombination is a more gradual process at the earliest stages of sex chromosome formation than would be expected from an inversion and may result instead from the accumulation of transposable elements. Our results present a cohesive understanding of the earliest genomic consequences of recombination suppression as well as valuable insights into the initial stages of sex chromosome formation and regulation of sex differentiation.


Subject(s)
Chromosomes, Plant , Genome, Plant , Salix/genetics
3.
Mol Ecol ; 24(4): 822-34, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25580852

ABSTRACT

Vertebrate genomes encode a diversity of G protein-coupled receptor (GPCR) that belong to large gene families and are used by olfactory systems to detect chemical cues found in the environment. It is not clear however, if individual receptors from these large gene families have evolved roles that are specific to certain life stages. Here, we used deep sequencing to identify differentially expressed receptor transcripts in the olfactory epithelia (OE) of freshwater, seawater and sexually mature male eels (Anguilla anguilla). This species is particularly intriguing because of its complex life cycle, extreme long-distance migrations and early-branching position within the teleost phylogeny. In the A. anguillaOE, we identified full-length transcripts for 13, 112, 6 and 38 trace amine-associated receptors, odorant receptors (OR) and type I and type II vomeronasal receptors (V1R and V2R). Most of these receptors were expressed at similar levels at different life stages and a subset of OR and V2R-like transcripts was more abundant in sexually mature males suggesting that ORs and V2R-like genes are important for reproduction. We also identified a set of GPCR signal transduction genes that were differentially expressed indicating that eels make use of different GPCR signal transduction genes at different life stages. The finding that a diversity of chemosensory receptors is expressed in the olfactory epithelium and that a subset is differentially expressed suggests that most receptors belonging to large chemosensory gene families have functions that are important at multiple life stages, while a subset has evolved specific functions at different life stages.


Subject(s)
Anguilla/genetics , Multigene Family , Olfactory Mucosa/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, Odorant/genetics , Receptors, Pheromone/genetics , Anguilla/physiology , Animals , DNA, Mitochondrial/genetics , Female , Male , Sequence Analysis, DNA , Sexual Maturation , Signal Transduction/genetics , Transcriptome
4.
BMC Genomics ; 15: 799, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25230743

ABSTRACT

BACKGROUND: The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. The European eel Anguilla anguilla is an important species in which to better understand the neuroendocrine factors that control reproduction because it is an endangered species, has a complex life cycle that includes two extreme long distance migrations with both freshwater and seawater stages and because it occupies a key position within the teleost phylogeny. At present, mature eels have never been caught in the wild and little is known about most aspects of reproduction in A. anguilla. The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this, we used microarrays to compare the gene expression profiles of sexually mature to immature males. RESULTS: Using a false discovery rate of 0.05, a total of 1,497 differentially expressed genes were identified. Of this set, 991 were expressed at higher levels in brains (forebrain and midbrain) of mature males while 506 were expressed at lower levels relative to brains of immature males. The set of up-regulated genes includes genes involved in neuroendocrine processes, cell-cell signaling, neurogenesis and development. Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity. CONCLUSIONS: This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. Here, we have defined a set of genes that help to understand the molecular mechanisms controlling reproduction in eels. Some of these genes have previously described functions while many others have roles that have yet to be characterized in a reproductive context. Since most of the genes examined here have orthologs in other vertebrates, the results of this study will contribute to the body of knowledge concerning reproduction in vertebrates as well as to an improved understanding of eel biology.


Subject(s)
Anguilla/growth & development , Anguilla/genetics , Brain/metabolism , Fish Proteins/genetics , Gene Expression Profiling , Sexual Maturation , Anguilla/anatomy & histology , Animals , Gene Expression Regulation, Developmental , Male , Oligonucleotide Array Sequence Analysis
5.
Genome Biol Evol ; 16(1)2024 01 05.
Article in English | MEDLINE | ID: mdl-38155579

ABSTRACT

The evolution of gonochorism from hermaphroditism is linked with the formation of sex chromosomes, as well as the evolution of sex-biased and sex-specific gene expression to allow both sexes to reach their fitness optimum. There is evidence that sexual selection drives the evolution of male-biased gene expression in particular. However, previous research in this area in animals comes from either theoretical models or comparative studies of already old sex chromosomes. We therefore investigated changes in gene expression under 3 different selection regimes for the simultaneous hermaphrodite Macrostomum lignano subjected to sex-limited experimental evolution (i.e. selection for fitness via eggs, sperm, or a control regime allowing both). After 21 and 22 generations of selection for male-specific or female-specific fitness, we characterized changes in whole-organism gene expression. We found that female-selected lines had changed the most in their gene expression. Although annotation for this species is limited, gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggest that metabolic changes (e.g. biosynthesis of amino acids and carbon metabolism) are an important adaptive component. As predicted, we found that the expression of genes previously identified as testis-biased candidates tended to be downregulated in the female-selected lines. We did not find any significant expression differences for previously identified candidates of other sex-specific organs, but this may simply reflect that few transcripts have been characterized in this way. In conclusion, our experiment suggests that changes in testis-biased gene expression are important in the early evolution of sex chromosomes and gonochorism.


Subject(s)
Gene Expression Profiling , Semen , Animals , Male , Female , Transcriptome , Testis , Spermatozoa , Evolution, Molecular
6.
Sci Adv ; 10(33): eadn0597, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39141739

ABSTRACT

Spiders produce nature's toughest fiber using renewable components at ambient temperatures and with water as solvent, making it highly interesting to replicate for the materials industry. Despite this, much remains to be understood about the bioprocessing and composition of spider silk fibers. Here, we identify 18 proteins that make up the spiders' strongest silk type, the major ampullate fiber. Single-cell RNA sequencing and spatial transcriptomics revealed that the secretory epithelium of the gland harbors six cell types. These cell types are confined to three distinct glandular zones that produce specific combinations of silk proteins. Image analysis of histological sections showed that the secretions from the three zones do not mix, and proteomics analysis revealed that these secretions form layers in the final fiber. Using a multi-omics approach, we provide substantial advancements in the understanding of the structure and function of the major ampullate silk gland as well as of the architecture and composition of the fiber it produces.


Subject(s)
Genomics , Proteomics , Silk , Single-Cell Analysis , Spiders , Transcriptome , Spiders/metabolism , Spiders/genetics , Animals , Silk/metabolism , Silk/chemistry , Silk/genetics , Proteomics/methods , Genomics/methods , Single-Cell Analysis/methods , Gene Expression Profiling/methods
7.
Sci Rep ; 13(1): 15202, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709909

ABSTRACT

The ability of animals to perceive and respond to sensory information is essential for their survival in diverse environments. While much progress has been made in understanding various sensory modalities, the sense of hygrosensation, which involves the detection and response to humidity, remains poorly understood. In this study, we focused on the hygrosensory, and closely related thermosensory, systems in the vinegar fly Drosophila melanogaster to unravel the molecular profile of the cells of these senses. Using a transcriptomic analysis of over 37,000 nuclei, we identified twelve distinct clusters of cells corresponding to temperature-sensing arista neurons, humidity-sensing sacculus neurons, and support cells relating to these neurons. By examining the expression of known and novel marker genes, we validated the identity of these clusters and characterized their gene expression profiles. We found that each cell type could be characterized by a unique expression profile of ion channels, GPCR signaling molecules, synaptic vesicle cycle proteins, and cell adhesion molecules. Our findings provide valuable insights into the molecular basis of hygro- and thermosensation. Understanding the mechanisms underlying hygro- and thermosensation may shed light on the broader understanding of sensory systems and their adaptation to different environmental conditions in animals.


Subject(s)
Ascomycota , Drosophilidae , Animals , Drosophila melanogaster/genetics , Acetic Acid , Neurons , Cell Nucleus
8.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37619978

ABSTRACT

Sponges are among the earliest branching extant animals. As such, genetic data from this group are valuable for understanding the evolution of various traits and processes in other animals. However, like many marine organisms, they are notoriously difficult to sequence, and hence, genomic data are scarce. Here, we present the draft genome assembly for the North Atlantic deep-sea high microbial abundance species Geodia barretti Bowerbank 1858, from a single individual collected on the West Coast of Sweden. The nuclear genome assembly has 4,535 scaffolds, an N50 of 48,447 bp and a total length of 144 Mb; the mitochondrial genome is 17,996 bp long. BUSCO completeness was 71.5%. The genome was annotated using a combination of ab initio and evidence-based methods finding 31,884 protein-coding genes.


Subject(s)
Genome, Mitochondrial , Geodia , Animals , Geodia/genetics , Aquatic Organisms/genetics , Sweden
9.
Mol Ecol Resour ; 22(6): 2379-2395, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35348299

ABSTRACT

The major histocompatibility complex (MHC) is of central importance to the immune system, and an optimal MHC diversity is believed to maximize pathogen elimination. Birds show substantial variation in MHC diversity, ranging from few genes in most bird orders to very many genes in passerines. Our understanding of the evolutionary trajectories of the MHC in passerines is hampered by lack of data on genomic organization. Therefore, we assembled and annotated the MHC genomic region of the great reed warbler (Acrocephalus arundinaceus), using long-read sequencing and optical mapping. The MHC region is large (>5.5 Mb), characterized by structural changes compared to hitherto investigated bird orders and shows higher repeat content than the genome average. These features were supported by analyses in three additional passerines. MHC genes in passerines are found in two different chromosomal arrangements, either as single copy MHC genes located among non-MHC genes, or as tandemly duplicated tightly linked MHC genes. Some single copy MHC genes are old and putative orthologues among species. In contrast tandemly duplicated MHC genes are monophyletic within species and have evolved by simultaneous gene duplication of several MHC genes. Structural differences in the MHC genomic region among bird orders seem substantial compared to mammals and have possibly been fuelled by clade-specific immune system adaptations. Our study provides methodological guidance in characterizing complex genomic regions, constitutes a resource for MHC research in birds, and calls for a revision of the general belief that avian MHC has a conserved gene order and small size compared to mammals.


Subject(s)
Major Histocompatibility Complex , Passeriformes , Animals , Biological Evolution , Genome , Genomics , Major Histocompatibility Complex/genetics , Mammals/genetics , Passeriformes/genetics , Phylogeny
10.
Nat Ecol Evol ; 4(12): 1713-1724, 2020 12.
Article in English | MEDLINE | ID: mdl-32958860

ABSTRACT

Domestication is one of the strongest examples of artificial selection and has produced some of the most extreme within-species phenotypic variation known. In the case of the chicken, it has been hypothesized that DNA methylation may play a mechanistic role in the domestication response. By inter-crossing wild-derived red junglefowl with domestic chickens, we mapped quantitative trait loci for hypothalamic methylation (methQTL), gene expression (eQTL) and behaviour. We find large, stable methylation differences, with 6,179 cis and 2,973 trans methQTL identified. Over 46% of the trans effects were genotypically controlled by five loci, mainly associated with increased methylation in the junglefowl genotype. In a third of eQTL, we find that there is a correlation between gene expression and methylation, while statistical causality analysis reveals multiple instances where methylation is driving gene expression, as well as the reverse. We also show that methylation is correlated with some aspects of behavioural variation in the inter-cross. In conclusion, our data suggest a role for methylation in the regulation of gene expression underlying the domesticated phenotype of the chicken.


Subject(s)
Chickens , Domestication , Animals , Chickens/genetics , DNA Methylation , Gene Expression Regulation , Genotype
11.
BMC Evol Biol ; 9: 242, 2009 Oct 05.
Article in English | MEDLINE | ID: mdl-19804645

ABSTRACT

BACKGROUND: A common feature of chemosensory systems is the involvement of G protein-coupled receptors (GPCRs) in the detection of environmental stimuli. Several lineages of GPCRs are involved in vertebrate olfaction, including trace amine-associated receptors, type 1 and 2 vomeronasal receptors and odorant receptors (ORs). Gene duplication and gene loss in different vertebrate lineages have lead to an enormous amount of variation in OR gene repertoire among species; some fish have fewer than 100 OR genes, while some mammals possess more than 1000. Fascinating features of the vertebrate olfactory system include allelic exclusion, where each olfactory neuron expresses only a single OR gene, and axonal guidance where neurons expressing the same receptor project axons to common glomerulae. By identifying homologous ORs in vertebrate and in non-vertebrate chordates, we hope to expose ancestral features of the chordate olfactory system that will help us to better understand the evolution of the receptors themselves and of the cellular components of the olfactory system. RESULTS: We have identified 50 full-length and 11 partial ORs in Branchiostoma floridae. No ORs were identified in Ciona intestinalis. Phylogenetic analysis places the B. floridae OR genes in a monophyletic clade with the vertebrate ORs. The majority of OR genes in amphioxus are intronless and many are also tandemly arrayed in the genome. By exposing conserved amino acid motifs and testing the ability of those motifs to discriminate between ORs and non-OR GPCRs, we identified three OR-specific amino acid motifs common in cephalochordate, fish and mammalian and ORs. CONCLUSION: Here, we show that amphioxus has orthologs of vertebrate ORs. This conclusion demonstrates that the receptors, and perhaps other components of vertebrate olfaction, evolved at least 550 million years ago. We have also identified highly conserved amino acid motifs that may be important for maintaining receptor conformation or regulating receptor activity. We anticipate that the identification of vertebrate OR orthologs in amphioxus will lead to an improved understanding of OR gene family evolution, OR gene function, and the mechanisms that control cell-specific expression, axonal guidance, signal transduction and signal integration.


Subject(s)
Chordata, Nonvertebrate/genetics , Evolution, Molecular , Receptors, Odorant/genetics , Amino Acid Motifs , Animals , Fishes/genetics , Markov Chains , Phylogeny , Sequence Alignment , Sequence Analysis, Protein , Sequence Homology, Amino Acid
12.
BMC Evol Biol ; 8: 210, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18638376

ABSTRACT

BACKGROUND: Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. In cichlids, for example, long wavelength-sensitive (LWS) opsins appear to play a role in mate choice and male color variation within and among species. To test the hypothesis that the evolution of elaborate coloration in male guppies (Poecilia reticulata) is also associated with opsin gene diversity, we sequenced long wavelength-sensitive (LWS) opsin genes in six species of the family Poeciliidae. RESULTS: Sequences of four LWS opsin genes were amplified from the guppy genome and from mRNA isolated from adult guppy eyes. Variation in expression was quantified using qPCR. Three of the four genes encode opsins predicted to be most sensitive to different wavelengths of light because they vary at key amino acid positions. This family of LWS opsin genes was produced by a diversity of duplication events. One, an intronless gene, was produced prior to the divergence of families Fundulidae and Poeciliidae. Between-gene PCR and DNA sequencing show that two of the guppy LWS opsins are linked in an inverted orientation. This inverted tandem duplication event occurred near the base of the poeciliid tree in the common ancestor of Poecilia and Xiphophorus. The fourth sequence has been uncovered only in the genus Poecilia. In the guppies surveyed here, this sequence is a hybrid, with the 5' end most similar to one of the tandem duplicates and the 3' end identical to the other. CONCLUSION: Enhanced wavelength discrimination, a possible consequence of opsin gene duplication and divergence, might have been an evolutionary prerequisite for color-based sexual selection and have led to the extraordinary coloration now observed in male guppies and in many other poeciliids.


Subject(s)
Color Perception/physiology , Poecilia/genetics , Rod Opsins/genetics , Amino Acid Substitution , Animals , Cyprinodontiformes/genetics , Gene Duplication , Mosaicism , Nucleic Acid Hybridization , Phylogeny , Poecilia/classification , Reverse Transcriptase Polymerase Chain Reaction , Rod Opsins/chemistry , Rod Opsins/physiology
13.
Epigenetics Chromatin ; 9(1): 38, 2016.
Article in English | MEDLINE | ID: mdl-27625704

ABSTRACT

[This corrects the article DOI: 10.1186/s13072-015-0042-4.].

14.
Article in English | MEDLINE | ID: mdl-26604986

ABSTRACT

BACKGROUND: CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in metazoans. CBP plays an important role in embryonic development and cell differentiation and mutations in CBP can lead to various diseases in humans. In addition, CBP and the related p300 protein have successfully been used to predict enhancers in both humans and flies when they occur with monomethylation of histone H3 on lysine 4 (H3K4me1). RESULTS: Here, we compare CBP chromatin immunoprecipitation sequencing data from Drosophila S2 cells with modENCODE data and show that CBP is bound at genomic sites with a wide range of functions. As expected, we find that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome are found at Polycomb response elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent repressive H3K27 methylation from spreading into adjacent chromatin. CONCLUSIONS: We conclude that CBP could be involved in a much wider range of functions than has previously been appreciated, including Polycomb repression and insulator activity. In addition, we discuss the possibility that a common role for CBP at all functional elements may be to regulate interactions between distant chromosomal regions and speculate that CBP is controlling higher order chromatin organization.

15.
Article in English | MEDLINE | ID: mdl-26253995

ABSTRACT

The European eel Anguilla anguilla has a complex life cycle that includes freshwater, seawater and morphologically distinct stages as well as two extreme long distance migrations. Eels do not feed as they migrate across the Atlantic to the Sargasso Sea but nevertheless reach sexual maturity before spawning. It is not yet clear how existing energy stores are used to reach the appropriate developmental state for reproduction. Since the liver is involved in energy metabolism, protein biosynthesis and endocrine regulation it is expected to play a key role in the regulation of reproductive development. We therefore used microarrays to identify genes that may be involved in this process. Using this approach, we identified 231 genes that were expressed at higher and 111 genes that were expressed at lower levels in sexually mature compared with immature males. The up-regulated set includes genes involved in lipid metabolism, fatty acid synthesis and transport, mitochondrial function, steroid transport and bile acid metabolism. Several genes with putative enzyme functions were also expressed at higher levels at sexual maturity while genes involved in immune system processes and protein biosynthesis tended to be down-regulated at this stage. By using a high-throughput approach, we have identified a subset of genes that may be linked with the mobilization of energy stores for sexual maturation and migration. These results contribute to an improved understanding of eel reproductive biology and provide insight into the role of the liver in other teleosts with a long distance spawning migrations.


Subject(s)
Anguilla/growth & development , Anguilla/genetics , Liver/metabolism , Sexual Maturation , Transcriptome , Animals , Gene Expression Regulation, Developmental , Liver/enzymology , Liver/growth & development , Male
16.
Genome Biol Evol ; 3: 36-43, 2011.
Article in English | MEDLINE | ID: mdl-21123836

ABSTRACT

In vertebrates, olfaction is mediated by several families of G protein-coupled receptors (GPCRs) including odorant receptors (ORs). In this study, we investigated the antiquity of OR genes by searching for amino acid motifs found in chordate ORs among the protein predictions from 12 nonchordate species. Our search uncovered a novel group of genes in the cnidarian Nematostella vectensis. Phylogenetic analysis that included representatives from the other major lineages of rhodopsin-like GPCRs showed that the cnidarian genes, the cephalochordate and vertebrate ORs, and a family of genes from the echinoderm, Strongylocentrotus purpuratus, form a monophyletic clade. The taxonomic distribution of these genes indicates that the formation of this clade and therefore the diversification of the rhodopsin-like GPCR family began at least 700 million years ago, prior to the divergence of cnidarians and bilaterians. ORs and other rhodopsin-like GPCRs have roles in cell migration, axon guidance, and neurite growth; therefore, duplication and divergence in this family may have played a key role in the evolution of cell type diversity (including the emergence of complex nervous systems) and in the evolution of metazoan body plan diversity.


Subject(s)
Cnidaria/genetics , Receptors, Odorant/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Conserved Sequence , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL