Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Bioorg Med Chem Lett ; 96: 129518, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37838344

ABSTRACT

The NLRP3 inflammasome is a multiprotein complex that plays a critical role in activating the immune system in response to danger signals. Small molecule agonists of NLRP3 may offer clinical benefits in cancer immunology either as a monotherapy or in combination with checkpoint blockade, where it is hypothesised that their application can help to initiate an antitumor immune response. In this study, we report the discovery of quinazolines and 8-azaquinazolines as NLRP3 agonists and their chemical optimization to afford compounds with oral bioavailability in mice. We confirm that these compounds engage the NLRP3 inflammasome by verifying their dependence upon lipopolysaccharide (LPS) priming for cytokine release and the activation of Caspase-1. We further demonstrate pathway engagement through loss of activity in an NLRP3-knockout THP1 cell line. Based on their pharmacokinetic profile and biological activity, these compounds represent valuable tools to evaluate the therapeutic potential of NLRP3 activation in a pre-clinical setting.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Biological Availability , Quinazolines/pharmacology , Quinazolines/metabolism , Macrophages/metabolism , Caspase 1/metabolism , Lipopolysaccharides/pharmacology , Interleukin-1beta/metabolism
2.
J Med Virol ; 92(9): 1671-1675, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32330291

ABSTRACT

A pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading throughout the world. Though molecular diagnostic tests are the gold standard for COVID-19, serological testing is emerging as a potential surveillance tool, in addition to its complementary role in COVID-19 diagnostics. Indubitably quantitative serological testing provides greater advantages than qualitative tests but today there is still little known about serological diagnostics and what the most appropriate role quantitative tests might play. Sixty-one COVID-19 patients and 64 patients from a control group were tested by iFlash1800 CLIA analyzer for anti-SARS CoV-2 antibodies IgM and IgG. All COVID-19 patients were hospitalized in San Giovanni di Dio Hospital (Florence, Italy) and had a positive oro/nasopharyngeal swab reverse-transcription polymerase chain reaction result. The highest sensitivity with a very good specificity performance was reached at a cutoff value of 10.0 AU/mL for IgM and of 7.1 for IgG antibodies, hence near to the manufacturer's cutoff values of 10 AU/mL for both isotypes. The receiver operating characteristic curves showed area under the curve values of 0.918 and 0.980 for anti-SARS CoV-2 antibodies IgM and IgG, respectively. iFlash1800 CLIA analyzer has shown highly accurate results for the anti-SARS-CoV-2 antibodies profile and can be considered an excellent tool for COVID-19 diagnostics.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , Immunoassay , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Luminescent Measurements , SARS-CoV-2/immunology , Aged , Aged, 80 and over , Antibodies, Viral/blood , Automation, Laboratory , COVID-19/virology , Female , Humans , Immunoassay/methods , Immunoassay/standards , Immunoglobulin G/blood , Immunoglobulin M/blood , Luminescent Measurements/methods , Luminescent Measurements/standards , Male , Middle Aged , ROC Curve , Reproducibility of Results , Sensitivity and Specificity
3.
BMC Biol ; 16(1): 150, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30593278

ABSTRACT

BACKGROUND: Base Editing is a precise genome editing method that uses a deaminase-Cas9 fusion protein to mutate cytidine to thymidine in target DNA in situ without the generation of a double-strand break. However, the efficient enrichment of genetically modified cells using this technique is limited by the ability to detect such events. RESULTS: We have developed a Base Editing FLuorescent Activity REporter (BE-FLARE), which allows for the enrichment of cells that have undergone editing of target loci based on a fluorescence shift from BFP to GFP. We used BE-FLARE to evaluate the editing efficiency of APOBEC3A and APOBEC3B family members as alternatives deaminase domains to the rat APOBEC1 domain used in base editor 3 (BE3). We identified human APOBEC3A and APOBEC3B as highly efficient cytidine deaminases for base editing applications with unique properties. CONCLUSIONS: Using BE-FLARE to report on the efficiency and precision of editing events, we outline workflows for the accelerated generation of genetically engineered cell models and the discovery of alternative base editors.


Subject(s)
APOBEC-1 Deaminase/genetics , Cytidine Deaminase/genetics , Gene Editing/methods , Genetic Engineering/methods , Minor Histocompatibility Antigens/genetics , Proteins/genetics , Animals , Humans , Rats
4.
Development ; 141(3): 526-37, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24423662

ABSTRACT

Trimethylation of histone H3 lysine 4 (H3K4me3) at the promoters of actively transcribed genes is a universal epigenetic mark and a key product of Trithorax group action. Here, we show that Mll2, one of the six Set1/Trithorax-type H3K4 methyltransferases in mammals, is required for trimethylation of bivalent promoters in mouse embryonic stem cells. Mll2 is bound to bivalent promoters but also to most active promoters, which do not require Mll2 for H3K4me3 or mRNA expression. By contrast, the Set1 complex (Set1C) subunit Cxxc1 is primarily bound to active but not bivalent promoters. This indicates that bivalent promoters rely on Mll2 for H3K4me3 whereas active promoters have more than one bound H3K4 methyltransferase, including Set1C. Removal of Mll1, sister to Mll2, had almost no effect on any promoter unless Mll2 was also removed, indicating functional backup between these enzymes. Except for a subset, loss of H3K4me3 on bivalent promoters did not prevent responsiveness to retinoic acid, thereby arguing against a priming model for bivalency. In contrast, we propose that Mll2 is the pioneer trimethyltransferase for promoter definition in the naïve epigenome and that Polycomb group action on bivalent promoters blocks the premature establishment of active, Set1C-bound, promoters.


Subject(s)
Embryonic Stem Cells/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lysine/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Promoter Regions, Genetic , Animals , Binding Sites/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Chromosomes, Artificial, Bacterial/metabolism , Embryonic Stem Cells/drug effects , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genome/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Methylation/drug effects , Mice , Models, Biological , Myeloid-Lymphoid Leukemia Protein/deficiency , Protein Binding/drug effects , Protein Binding/genetics , Transgenes/genetics , Tretinoin/pharmacology
5.
Development ; 141(5): 1022-35, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24550110

ABSTRACT

Histone 3 lysine 4 (H3K4) methylation is a universal epigenetic mark. In mammals, there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of Set1: Setd1a and Setd1b. Here we show that mouse Setd1a is required for gastrulation, whereas Setd1b-deficient embryos survive to E11.5 but are grossly retarded. Setd1a knockout embryos implant but do not proceed past the epiblast. Furthermore, Setd1a is not required until the inner cell mass has formed, at which stage it has replaced Mll2 as the major H3K4 methyltransferase. Setd1a is required for embryonic, epiblast and neural stem cell survival and neural stem cell reprogramming, whereas Setd1b is dispensable. Deletion of Setd1a in embryonic stem cells resulted in rapid losses of bulk H3K4 methylation, pluripotency gene expression and proliferation, with G1 pileup. Setd1b overexpression could not rescue the proliferation defects caused by loss of Setd1a in embryonic stem cells. The precise developmental requirement for Setd1a suggests that gastrulation is regulated by a switch between the major H3K4 methyltransferases.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Astrocytes/cytology , Astrocytes/metabolism , Cell Cycle/genetics , Cell Cycle/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Proliferation , Gastrulation/genetics , Gastrulation/physiology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Germ Layers/cytology , Germ Layers/metabolism , Histone-Lysine N-Methyltransferase/genetics , Mice , Mice, Knockout , Neurons/cytology , Neurons/metabolism
6.
Methods ; 53(2): 113-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20868752

ABSTRACT

Protein tagging offers many advantages for proteomic and regulomic research, particularly due to the use of generic and highly sensitive methods that can be applied with reasonable throughput. Ideally, protein tagging is equivalent to having a high affinity antibody for every chosen protein. However, these advantages are compromised if the tagged protein is overexpressed, which is usually the case from cDNA expression vectors. BAC (bacterial artificial chromosome) transgenes present a way to express a chosen protein at physiological levels with all regulatory elements in their native configurations, including cell cycle, alternative splicing and microRNA regulation. Recombineering has become the method of choice for modifying large constructs like BACs. Here, we present a method for protein tagging by recombineering BACs, transfecting cells and evaluating tagged protein expression.


Subject(s)
Chromosomes, Artificial, Bacterial , Proteomics/methods , Transgenes , Animals , Genetic Engineering/methods , Green Fluorescent Proteins/analysis , Mice , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Transfection
7.
Methods ; 53(4): 437-52, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21195765

ABSTRACT

Protein tagging offers many advantages for proteomic and regulomic research. Ideally, protein tagging is equivalent to having a high affinity antibody for every chosen protein. However, these advantages are compromised if the tagged protein is overexpressed, which is usually the case from cDNA expression vectors. Physiological expression of tagged proteins can be achieved by gene targeting to knock-in the protein tag or by BAC transgenesis. BAC transgenes usually retain the native gene architecture including all cis-regulatory elements as well as the exon-intron configurations. Consequently most BAC transgenes are authentically regulated (e.g. by transcription factors, cell cycle, miRNA) and can be alternatively spliced. Recombineering has become the method of choice for generating targeting constructs or modifying BACs. Here we present methods with detailed protocols for protein tagging by recombineering for BAC transgenesis and/or gene targeting, including the evaluation of tagged protein expression, the retrieval of associated protein complexes for mass spectrometry and the use of the tags in ChIP (chromatin immunoprecipitation).


Subject(s)
Blotting, Western/methods , Chromatin Immunoprecipitation/methods , Chromosomes, Artificial, Bacterial/genetics , Cloning, Molecular/methods , Immunoprecipitation/methods , Recombinant Fusion Proteins/biosynthesis , Transgenes , Animals , Chromosomes, Artificial, Bacterial/metabolism , Embryonic Stem Cells/metabolism , Epitopes , Genotype , Humans , Mass Spectrometry/methods , Mice , Polymerase Chain Reaction/methods , Protein Engineering , Recombinant Fusion Proteins/genetics
8.
Mol Cancer Ther ; 21(10): 1535-1546, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35930755

ABSTRACT

AZD4625 is a potent, selective, and orally bioavailable inhibitor of oncogenic KRASG12C as demonstrated in cellular assays and in vivo in preclinical cell line-derived and patient-derived xenograft models. In vitro and cellular assays have shown selective binding and inhibition of the KRASG12C mutant isoform, which carries a glycine to cysteine mutation at residue 12, with no binding and inhibition of wild-type RAS or isoforms carrying non-KRASG12C mutations. The pharmacology of AZD4625 shows that it has the potential to provide therapeutic benefit to patients with KRASG12C mutant cancer as either a monotherapy treatment or in combination with other targeted drug agents.


Subject(s)
Antineoplastic Agents , Cysteine , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Glycine/pharmacology , Humans , Mutation , Protein Isoforms , Xenograft Model Antitumor Assays
9.
Nat Commun ; 12(1): 497, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479216

ABSTRACT

Prokaryotic restriction enzymes, recombinases and Cas proteins are powerful DNA engineering and genome editing tools. However, in many primary cell types, the efficiency of genome editing remains low, impeding the development of gene- and cell-based therapeutic applications. A safe strategy for robust and efficient enrichment of precisely genetically engineered cells is urgently required. Here, we screen for mutations in the receptor for Diphtheria Toxin (DT) which protect human cells from DT. Selection for cells with an edited DT receptor variant enriches for simultaneously introduced, precisely targeted gene modifications at a second independent locus, such as nucleotide substitutions and DNA insertions. Our method enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation. Toxin-based selection works in both cancer-transformed and non-transformed cells, including human induced pluripotent stem cells and human primary T-lymphocytes, as well as it is applicable also in vivo, in mice with humanized liver. This work represents a flexible, precise, and efficient selection strategy to engineer cells using CRISPR-Cas and base editing systems.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genetic Engineering/methods , Heparin-binding EGF-like Growth Factor/genetics , Mutation , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation/genetics , Cell Survival/genetics , Cells, Cultured , HCT116 Cells , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice
10.
Surg Res Pract ; 2016: 2906145, 2016.
Article in English | MEDLINE | ID: mdl-26998510

ABSTRACT

The clinical chart of 621 patients with III-IV haemorrhoids undergoing Stapled Hemorrhoidopexy (SH) with CPH34 HV in 2012-2014 was consecutively reviewed to assess its safety and efficacy after at least 12 months of follow-up. Mean volume of prolapsectomy was significantly higher (13.0 mL; SD, 1.4) in larger prolapse (9.3 mL; SD, 1.2) (p < 0.001). Residual or recurrent haemorrhoids occurred in 11 of 621 patients (1.8%) and in 12 of 581 patients (1.9%), respectively. Relapse was correlated with higher preoperative Constipation Scoring System (CSS) (p = 0.000), Pescatori's degree (p = 0.000), Goligher's grade (p = 0.003), prolapse exceeding half of the length of the Circular Anal Dilator (CAD) (p = 0.000), and higher volume of prolapsectomy (p = 0.000). At regression analysis, only the preoperative CSS, Pescatori's degree, Goligher's grade, and volume of resection were significantly predictive of relapse. A high level of satisfaction (VAS = 8.6; SD, 1.0) coupled with a reduction of 12-month CSS (Δ preoperative CSS/12 mo CSS = 3.4, SD, 2.0; p < 0.001) was observed. The wider prolapsectomy achievable with CPH34 HV determined an overall 3.7% relapse rate in patients with high prevalence of large internal rectal prolapse, coupled with high satisfaction index, significant reduction of CSS, and very low complication rates.

12.
Cell Syst ; 1(2): 141-51, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-27135800

ABSTRACT

We combine a genome-scale RNAi screen in mouse epiblast stem cells (EpiSCs) with genetic interaction, protein localization, and "protein-level dependency" studies-a systematic technique that uncovers post-transcriptional regulation-to delineate the network of factors that control the expression of Oct4, a key regulator of pluripotency. Our data signify that there are similarities, but also fundamental differences in Oct4 regulation in EpiSCs versus embryonic stem cells (ESCs). Through multiparametric data analyses, we predict that Tox4 is associating with the Paf1C complex, which maintains cell identity in both cell types, and validate that this protein-protein interaction exists in ESCs and EpiSCs. We also identify numerous knockdowns that increase Oct4 expression in EpiSCs, indicating that, in stark contrast to ESCs, Oct4 is under active repressive control in EpiSCs. These studies provide a framework for better understanding pluripotency and for dissecting the molecular events that govern the transition from the pre-implantation to the post-implantation state.

13.
Surg Res Pract ; 2014: 710128, 2014.
Article in English | MEDLINE | ID: mdl-25478602

ABSTRACT

CPH34 HV, a high volume stapler, was tested in order to assess its safety and efficacy in reducing residual/recurrent haemorrhoids. The clinical charts of 430 patients with third- to fourth-degree haemorrhoids undergoing SH in 2012-2013 were consecutively reviewed, excluding those with obstructed defecation (rectocele >2 cm; Wexner's score >15). Follow-up was scheduled at six and 12 months. Rectal prolapse exceeding more than half of CAD was reported in 341 patients (79.3%); one technical failure was reported (0.2%) without any serious untoward effect; and 1.3 stitch/patient (SD, 1.7) was required to achieve complete haemostasis. Doughnuts volume was higher (13.8 mL; SD, 1.5) in patients with a large rectal prolapse than with smaller one (8.9 mL; SD, 0.7) (P value <0.05). Residual and recurrent haemorrhoids occurred in 8 of 430 patients (1.8%) and 5 of 254 patients (1.9%), respectively. A high index of patient satisfaction (visual analogue scale = 8.9; SD, 0.9) coupled with a persistent reduction of constipation scores (CSS = 5.0, SD, 2.2) was observed. The wider prolapse resection well correlated with a clear-cut reduction of haemorrhoidal relapse, a high index of patient satisfaction, and clinically relevant reduction of constipations scores coupled with satisfactory haemostatic properties of CPH34 HV.

SELECTION OF CITATIONS
SEARCH DETAIL