Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Publication year range
1.
Hepatology ; 79(5): 1220-1238, 2024 May 01.
Article in English | MEDLINE | ID: mdl-37934656

ABSTRACT

Cystic fibrosis (CF) may cause a spectrum of hepatobiliary complications, including portal hypertension, multilobular cirrhosis, and liver failure. Current guidelines on the detection and monitoring of hepatobiliary complications in CF were published in 1999. The CF Foundation assembled a committee to evaluate research advances and formulate revised guidelines for CF-associated liver disease. A committee of hepatologists, gastroenterologists, pulmonologists, pharmacists, nurses, dietitians, individuals with CF, and the parents of a child with CF devised "population, intervention, comparison, and outcome" questions regarding hepatobiliary disease in CF. PubMed literature searches were performed for each population, intervention, comparison, and outcome question. Recommendations were voted on with 80% agreement required to approve a recommendation. Public comment on initial recommendations was solicited prior to the formulation of final recommendations. Thirty-one population, intervention, comparison, and outcome questions were assembled, 6401 manuscripts were title screened for relevance, with 1053 manuscripts undergoing detailed full-text review. Seven recommendations were approved for screening, 13 for monitoring of existing disease, and 14 for treatment of CF-associated hepatobiliary involvement or advanced liver disease. One recommendation on liver biopsy did not meet the 80% threshold. One recommendation on screening ultrasound was revised and re-voted on. Through a multidisciplinary committee and public engagement, we have assembled updated recommendations and guidance on screening, monitoring, and treatment of CF-associated hepatobiliary involvement and advanced liver disease. While research gaps remain, we anticipate that these recommendations will lead to improvements in CF outcomes through earlier detection and increased evidence-based approaches to monitoring and treatment.


Subject(s)
Cystic Fibrosis , Hypertension, Portal , Child , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/diagnosis , Cystic Fibrosis/therapy , Consensus , Mass Screening , Hypertension, Portal/complications , Liver Cirrhosis/complications
2.
Br J Haematol ; 204(1): 292-305, 2024 01.
Article in English | MEDLINE | ID: mdl-37876306

ABSTRACT

Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency and skeletal abnormalities. SDS bone marrow haematopoietic progenitors show increased apoptosis and impairment in granulocytic differentiation. Loss of Shwachman-Bodian-Diamond syndrome (SBDS) expression results in reduced eukaryotic 80S ribosome maturation. Biallelic mutations in the SBDS gene are found in ~90% of SDS patients, ~55% of whom carry the c.183-184TA>CT nonsense mutation. Several translational readthrough-inducing drugs aimed at suppressing nonsense mutations have been developed. One of these, ataluren, has received approval in Europe for the treatment of Duchenne muscular dystrophy. We previously showed that ataluren can restore full-length SBDS protein synthesis in SDS-derived bone marrow cells. Here, we extend our preclinical study to assess the functional restoration of SBDS capabilities in vitro and ex vivo. Ataluren improved 80S ribosome assembly and total protein synthesis in SDS-derived cells, restored myelopoiesis in myeloid progenitors, improved neutrophil chemotaxis in vitro and reduced neutrophil dysplastic markers ex vivo. Ataluren also restored full-length SBDS synthesis in primary osteoblasts, suggesting that its beneficial role may go beyond the myeloid compartment. Altogether, our results strengthened the rationale for a Phase I/II clinical trial of ataluren in SDS patients who harbour the nonsense mutation.


Subject(s)
Bone Marrow Diseases , Exocrine Pancreatic Insufficiency , Lipomatosis , Humans , Shwachman-Diamond Syndrome , Tumor Suppressor Protein p53/genetics , Lipomatosis/genetics , Codon, Nonsense , Myelopoiesis , Neutrophils/metabolism , Chemotaxis , Bone Marrow Diseases/genetics , Bone Marrow Diseases/therapy , Exocrine Pancreatic Insufficiency/genetics , Ribosomes/metabolism
3.
Am J Otolaryngol ; 45(3): 104236, 2024.
Article in English | MEDLINE | ID: mdl-38417261

ABSTRACT

PURPOSE: Our work aims to add evidence on the effectiveness of Elexacaftor-Tezacaftor-Ivacaftor on chronic rhinosinusitis in cystic fibrosis. MATERIALS AND METHODS: We conducted an observational retrospective cohort study at the Cystic Fibrosis Center of a tertiary care hospital to investigate the effect of Elexacaftor-Tezacaftor-Ivacaftor on chronic rhinosinusitis in cystic fibrosis patients, aged 12 or older. The study's endpoints were the change in the occurrence of acute exacerbations of chronic rhinosinusitis, and the variation of the endoscopic and radiologic findings scored using the Lund-Kennedy endoscopic scale, Lund-Mackay, and modified Lund-Mackay radiologic scales, in patients who underwent both pre-treatment and post-treatment examinations. RESULTS: The study population comprised 136 patients, of which 28 underwent both pre-treatment and post-treatment nasal endoscopy and 15 had pre- and post-treatment CT scans. Elexacaftor-Tezacaftor-Ivacaftor provided a significant improvement in chronic rhinosinusitis. The mean number of acute exacerbations of chronic rhinosinusitis per year in the pre-treatment time was 0.55 versus 0.35 during the treatment (p < 0.0021). The Lund-Kennedy scale had a pre-treatment average score of 4.21 points versus 1.5 points after the start of Elexacaftor-Tezacaftor-Ivacaftor (p < 0.0001). The average Lund-Mackay and modified Lund-Mackay scores in the pre-treatment time were respectively 14.6 and 16.45 points; and after the start of the therapy, they became 5.87 and 6.73 (p < 0.0001). CONCLUSION: Elexacaftor-Tezacaftor-Ivacaftor was associated with fewer acute exacerbations of chronic rhinosinusitis, and a significant improvement of chronic rhinosinusitis evaluated endoscopically and radiologically. To our knowledge, this is the first study investigating the change in the occurrence of acute exacerbation of chronic rhinosinusitis in patients affected by cystic fibrosis in therapy with Elexacaftor-Tezacaftor-Ivacaftor.


Subject(s)
Aminophenols , Benzodioxoles , Cystic Fibrosis , Drug Combinations , Indoles , Pyrazoles , Pyridines , Pyrrolidines , Rhinitis , Sinusitis , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/complications , Male , Rhinitis/drug therapy , Female , Retrospective Studies , Chronic Disease , Aminophenols/therapeutic use , Adult , Pyrazoles/therapeutic use , Indoles/therapeutic use , Sinusitis/drug therapy , Treatment Outcome , Benzodioxoles/therapeutic use , Adolescent , Young Adult , Pyridines/therapeutic use , Quinolones/therapeutic use , Child , Pyrroles/therapeutic use , Cohort Studies , Endoscopy , Chloride Channel Agonists/therapeutic use , Rhinosinusitis
4.
Haematologica ; 108(10): 2594-2605, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37226705

ABSTRACT

Shwachman-Diamond syndrome is a rare inherited bone marrow failure syndrome characterized by neutropenia, exocrine pancreatic insufficiency, and skeletal abnormalities. In 10-30% of cases, transformation to a myeloid neoplasm occurs. Approximately 90% of patients have biallelic pathogenic variants in the SBDS gene located on human chromosome 7q11. Over the past several years, pathogenic variants in three other genes have been identified to cause similar phenotypes; these are DNAJC21, EFL1, and SRP54. Clinical manifestations involve multiple organ systems and those classically associated with the Shwachman-Diamond syndrome (bone, blood, and pancreas). Neurocognitive, dermatologic, and retinal changes may also be found. There are specific gene-phenotype differences. To date, SBDS, DNAJC21, and SRP54 variants have been associated with myeloid neoplasia. Common to SBDS, EFL1, DNAJC21, and SRP54 is their involvement in ribosome biogenesis or early protein synthesis. These four genes constitute a common biochemical pathway conserved from yeast to humans that involve early stages of protein synthesis and demonstrate the importance of this synthetic pathway in myelopoiesis.


Subject(s)
Bone Marrow Diseases , Exocrine Pancreatic Insufficiency , Lipomatosis , Humans , Shwachman-Diamond Syndrome , Lipomatosis/genetics , Lipomatosis/metabolism , Lipomatosis/pathology , Bone Marrow Diseases/genetics , Bone Marrow Diseases/pathology , Mutation , Exocrine Pancreatic Insufficiency/genetics , Exocrine Pancreatic Insufficiency/metabolism , Exocrine Pancreatic Insufficiency/pathology , Signal Recognition Particle/genetics
5.
Liver Int ; 43(11): 2492-2502, 2023 11.
Article in English | MEDLINE | ID: mdl-37724776

ABSTRACT

BACKGROUND AND AIMS: Porto-sinusoidal vascular disease (PSVD) has been described as the prominent pathology in liver explants of patients with cystic fibrosis (CF), but data outside the transplant setting are lacking. We aimed to investigate the prevalence of portal hypertension (PH) in CF-associated liver disease (CFLD) and develop an algorithm to classify liver involvement in CF patients. METHODS: This is a cross-sectional study of consecutive paediatric and adult patients in a tertiary centre between 2018 and 2019, who underwent ultrasound, liver (LSM) and spleen stiffness (SSM) measurement. CFLD was defined according to physical examination, liver tests and ultrasound findings. PSVD was likely if there were PH signs in the absence of advanced chronic liver disease (CF-ACLD, LSM <10 kPa). A historical cohort was used to validate the prognostic significance of the new definitions. RESULTS: Fifty (27.5%) patients met CFLD criteria. At least one sign of PH was found in 47 (26%) patients, but most (81%) had LSM <10 kPa and were likely to have PSVD; only 9 (5%) had CF-ACLD. PSVD and CFLD (LSM <10 kPa) co-existed in most (23/36) cases. In the historical cohort (n = 599 patients), likely PSVD and CFLD+PH were independently associated with a 2-fold and 3.5-fold increase in mortality compared to patients without PH, respectively. In 34 patients with SSM, values <21 and >50 kPa accurately diagnosed specific signs of PH. CONCLUSIONS: PSVD is the prevailing cause of PH in CF patients. We developed a new diagnostic algorithm based on clinical and elastosonography criteria to classify liver involvement in patients with CF.


Subject(s)
Cystic Fibrosis , Elasticity Imaging Techniques , Hypertension, Portal , Idiopathic Noncirrhotic Portal Hypertension , Liver Diseases , Adult , Humans , Child , Prospective Studies , Cystic Fibrosis/complications , Cystic Fibrosis/pathology , Cross-Sectional Studies , Liver Diseases/diagnosis , Liver/pathology , Liver Cirrhosis/diagnosis
6.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835434

ABSTRACT

Shwachman-Diamond syndrome (SDS) represents one of the most common inherited bone marrow failure syndromes and is mainly caused by SBDS gene mutations. Only supportive treatments are available, with hematopoietic cell transplantation required when marrow failure occurs. Among all causative mutations, the SBDS c.258+2T>C variant at the 5' splice site (ss) of exon 2 is one of the most frequent. Here, we investigated the molecular mechanisms underlying aberrant SBDS splicing and showed that SBDS exon 2 is dense in splicing regulatory elements and cryptic splice sites, complicating proper 5'ss selection. Studies ex vivo and in vitro demonstrated that the mutation alters splicing, but it is also compatible with tiny amounts of correct transcripts, which would explain the survival of SDS patients. Moreover, for the first time for SDS, we explored a panel of correction approaches at the RNA and DNA levels and provided experimental evidence that the mutation effect can be partially counteracted by engineered U1snRNA, trans-splicing, and base/prime editors, ultimately leading to correctly spliced transcripts (from barely detectable to 2.5-5.5%). Among them, we propose DNA editors that, by stably reverting the mutation and potentially conferring positive selection to bone-marrow cells, could lead to the development of an innovative SDS therapy.


Subject(s)
Shwachman-Diamond Syndrome , Humans , DNA/genetics , Mutation , RNA Splice Sites , Shwachman-Diamond Syndrome/genetics , Shwachman-Diamond Syndrome/therapy , Alternative Splicing/genetics , Gene Editing
7.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674422

ABSTRACT

Cystic fibrosis (CF) is characterized by a progressive decline in lung function, which may be further impaired by viral infections. CF is therefore considered a comorbidity of coronavirus disease 2019 (COVID-19), and SARS-CoV-2 vaccine prioritization has been proposed for patients with (pw)CF. Poor outcomes have been reported in lung transplant recipients (LTR) after SARS-CoV-2 infections. LTR have also displayed poor immunization against SARS-CoV-2 after mRNA-based BNT162b2 vaccination, especially in those undergoing immunosuppressive treatment, mostly those receiving mycophenolate mofetil (MMF) therapy. We aimed to determine here the immunogenicity and safety of the BNT162b2 vaccine in our cohort of 260 pwCF, including 18 LTR. Serum levels of neutralizing anti-SARS-CoV-2 IgG and IgA antibodies were quantified after the administration of two doses. PwCF displayed a vaccine-induced IgG and IgA antiviral response comparable with that seen in the general population. We also observed that the immunogenicity of the BNT162b2 vaccine was significantly impaired in the LTR subcohort, especially in patients undergoing MMF therapy. The BNT162b2 vaccine also caused minor adverse events as in the general population, mostly after administration of the second dose. Overall, our results justify the use of the BNT162b2 vaccine in pwCF and highlight the importance of a longitudinal assessment of the anti-SARS-CoV-2 IgG and IgA neutralizing antibody response to COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Cystic Fibrosis , Lung Transplantation , Humans , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cystic Fibrosis/complications , Immunoglobulin A , Immunoglobulin G , Lung Transplantation/adverse effects , SARS-CoV-2
8.
Infection ; 50(3): 671-679, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34874541

ABSTRACT

PURPOSE: To describe the clinical course of COVID-19 in patients with cystic fibrosis (CF) and to identify risk factors for severe COVID-19. METHODS: We conducted a prospective study within the Italian CF Society. CF centers collected baseline and follow-up data of patients with virologically confirmed SARS-CoV-2 infection between March 2020 and June 2021. Odds ratios (ORs) for severe SARS-CoV-2 (as defined by hospital admission) were estimated by logistic regression models. RESULTS: The study included 236 patients with positive molecular test for SARS-CoV-2. Six patients died, 43 patients were admitted to hospital, 4 admitted to intensive care unit. Pancreatic insufficiency was associated with increased risk of severe COVID-19 (OR 4.04, 95% CI 1.52; 10.8). After adjusting for age and pancreatic insufficiency, forced expiratory volume in one second (FEVp) < 40% (OR 4.54, 95% CI 1.56; 13.2), oxygen therapy (OR 12.3, 95% CI 2.91-51.7), underweight (OR 2.92, 95% CI 1.12; 7.57), organ transplantation (OR 7.31, 95% CI 2.59; 20.7), diabetes (OR 2.67, 95% CI 1.23; 5.80) and liver disease (OR 3.67, 95% CI 1.77; 7.59) were associated with increased risk of severe COVID-19, while use of dornase alfa was associated with a reduced risk (OR 0.34, 95% CI 0.13-0.88). No significant changes were observed in FEVp from baseline to a median follow-up of 2 months (median difference: 0, interquartile range: - 4; 5, P = 0.62). CONCLUSION: Clinical features indicative of severe form of CF are associated with increased risk of COVID-19 hospitalization. SARS-CoV-2 infected patients do not experience a deterioration of respiratory function.


Subject(s)
COVID-19 , Cystic Fibrosis , Exocrine Pancreatic Insufficiency , COVID-19/epidemiology , Cystic Fibrosis/complications , Exocrine Pancreatic Insufficiency/complications , Humans , Italy/epidemiology , Prospective Studies , Risk Factors , SARS-CoV-2
9.
Int J Mol Sci ; 22(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34948128

ABSTRACT

Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS-OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.


Subject(s)
Calcification, Physiologic , Osteoblasts/metabolism , Shwachman-Diamond Syndrome/metabolism , Tumor Suppressor Protein p53/metabolism , Cells, Cultured , Female , Humans , Male , Osteoblasts/pathology , Proteins/genetics , Proteins/metabolism , Shwachman-Diamond Syndrome/genetics , Shwachman-Diamond Syndrome/pathology , Tumor Suppressor Protein p53/genetics
10.
J Pediatr ; 219: 196-201.e1, 2020 04.
Article in English | MEDLINE | ID: mdl-32037152

ABSTRACT

OBJECTIVE: To describe the hematologic outcome and long-term survival of patients enrolled in the Shwachman-Diamond syndrome Italian Registry. STUDY DESIGN: A retrospective and prospective study of patients recorded in the Shwachman-Diamond syndrome Italian Registry. RESULTS: The study population included 121 patients, 69 males and 52 females, diagnosed between 1999 and 2018. All patients had the clinical diagnosis confirmed by mutational analysis on the SBDS gene. During the study period, the incidence of SDS was 1 in 153 000 births. The median age of patients with SDS at diagnosis was 1.3 years (range, 0-35.6 years). At the first hematologic assessment, severe neutropenia was present in 25.8%, thrombocytopenia in 25.5%, and anemia in 4.6% of patients. A normal karyotype was found in 40 of 79 patients, assessed whereas the most frequent cytogenetic abnormalities were isochromosome 7 and interstitial deletion of the long arm of chromosome 20. The cumulative incidence of severe neutropenia, thrombocytopenia, and anemia at 30 years of age were 59.9%, 66.8%, and 20.2%, respectively. The 20-year cumulative incidence of myelodysplastic syndrome/leukemia and of bone marrow failure/severe cytopenia was 9.8% and 9.9%, respectively. Fifteen of 121 patients (12.4%) underwent allogeneic stem cell transplantation. Fifteen patients (12.4%) died; the probability of overall survival at 10 and 20 years was 95.7% and 87.4%, respectively. CONCLUSIONS: Despite an improvement in survival, hematologic complications still cause death in patients with SDS. Further studies are needed to optimize type and modality of hematopoietic stem cell transplantation and to assess the long-term outcome in nontransplanted patients.


Subject(s)
Hematologic Diseases/etiology , Shwachman-Diamond Syndrome/complications , Shwachman-Diamond Syndrome/mortality , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Italy , Male , Prospective Studies , Registries , Retrospective Studies , Survival Rate , Time Factors , Young Adult
11.
Int J Mol Sci ; 21(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630050

ABSTRACT

Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman-Diamond syndrome (SDS), Diamond-Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.


Subject(s)
Aminoglycosides/therapeutic use , Codon, Nonsense/drug effects , Congenital Bone Marrow Failure Syndromes/therapy , Nonsense Mediated mRNA Decay/drug effects , Oxadiazoles/therapeutic use , Aminoglycosides/pharmacology , Congenital Bone Marrow Failure Syndromes/genetics , Humans , Oxadiazoles/pharmacology
12.
Monaldi Arch Chest Dis ; 90(4)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33372741
13.
Br J Haematol ; 184(6): 974-981, 2019 03.
Article in English | MEDLINE | ID: mdl-30585299

ABSTRACT

In Shwachman-Diamond syndrome (SDS), deletion of the long arm of chromosome 20, del(20)(q), often acquired in bone marrow (BM), may imply a lower risk of developing myelodysplastic syndrome/acute myeloid leukaemia (MDS/AML), due to the loss of the EIF6 gene. The genes L3MBTL1 and SGK2, also on chromosome 20, are in a cluster of imprinted genes, and their loss implies dysregulation of BM function. We report here the results of array comparative genomic hybridization (a-CGH) performed on BM DNA of six patients which confirmed the consistent loss of EIF6 gene. Interestingly, array single nucleotide polymorphisms (SNPs) showed copy neutral loss of heterozygosity for EIF6 region in cases without del(20)(q). No preferential parental origin of the deleted chromosome 20 was detected by microsatellite analysis in six SDS patients. Our patients showed a very mild haematological condition, and none evolved into BM aplasia or MDS/AML. We extend the benign prognostic significance of del(20)(q) and loss of EIF6 to the haematological features of these patients, consistently characterized by mild hypoplastic BM, no or mild neutropenia, anaemia and thrombocytopenia. Some odd results obtained in microsatellite and SNP-array analysis demonstrate a peculiar genomic instability, in an attempt to improve BM function through the acquisition of the del(20)(q).


Subject(s)
Chromosomes, Human, Pair 20/genetics , Genomic Instability/genetics , Shwachman-Diamond Syndrome/genetics , Adolescent , Adult , Child , Female , Humans , Male , Prognosis , Shwachman-Diamond Syndrome/pathology , Young Adult
15.
Respir Res ; 20(1): 32, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30764828

ABSTRACT

Pulmonary disease is the main cause of the morbidity and mortality of patients affected by cystic fibrosis (CF). The lung pathology is dominated by excessive recruitment of neutrophils followed by an exaggerated inflammatory process that has also been reported to occur in the absence of apparent pathogenic infections. Airway surface dehydration and mucus accumulation are the driving forces of this process. The continuous release of reactive oxygen species and proteases by neutrophils contributes to tissue damage, which eventually leads to respiratory insufficiency. CF has been considered a paediatric problem for several decades. Nevertheless, during the last 40 years, therapeutic options for CF have been greatly improved, turning CF into a chronic disease and extending the life expectancy of patients. Unfortunately, chronic inflammatory processes, which are characterized by a substantial release of cytokines and chemokines, along with ROS and proteases, can accelerate cellular senescence, leading to further complications in adulthood. The alterations and mechanisms downstream of CFTR functional defects that can stimulate cellular senescence remain unclear. However, while there are correlative data suggesting that cellular senescence may be implicated in CF, a causal or consequential relationship between cellular senescence and CF is still far from being established. Senescence can be both beneficial and detrimental. Senescence may suppress bacterial infections and cooperate with tissue repair. Additionally, it may act as an effective anticancer mechanism. However, it may also promote a pro-inflammatory environment, thereby damaging tissues and leading to chronic age-related diseases. In this review, we present the most current knowledge on cellular senescence and contextualize its possible involvement in CF.


Subject(s)
Cellular Senescence , Cystic Fibrosis/pathology , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator , Humans
16.
Pediatr Blood Cancer ; 66(5): e27597, 2019 05.
Article in English | MEDLINE | ID: mdl-30604473

ABSTRACT

Shwachman-Diamond syndrome (SDS) is one of the more common inherited bone marrow failure syndromes, characterized by neutropenia, occasional thrombocytopenia, and anemia. Bone marrow evaluation reveals an increased number of monocytes and mature B cells along with decreased granulocytes. However, little is known about the subpopulations of peripheral blood cells, and few previous publications have been based on a small number of patients. Here, we report a comprehensive immunophenotypic analysis from a cohort of 37 SDS patients who display impairment mostly in the myeloid compartment with a deficiency also in the number of B cells and CD4/CD8 double-negative T cells.


Subject(s)
B-Lymphocytes/immunology , Bone Marrow Diseases/blood , Bone Marrow Diseases/immunology , Exocrine Pancreatic Insufficiency/blood , Exocrine Pancreatic Insufficiency/immunology , Immunophenotyping/methods , Leukocytes, Mononuclear/immunology , Lipomatosis/blood , Lipomatosis/immunology , Adolescent , Adult , Bone Marrow Diseases/pathology , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Exocrine Pancreatic Insufficiency/pathology , Female , Follow-Up Studies , Humans , Infant , Lipomatosis/pathology , Male , Prognosis , Shwachman-Diamond Syndrome , Young Adult
17.
Br J Haematol ; 182(1): 114-124, 2018 07.
Article in English | MEDLINE | ID: mdl-29767474

ABSTRACT

Shwachman-Diamond syndrome (SDS) is a rare multi-organ recessive disease mainly characterised by pancreatic insufficiency, skeletal defects, short stature and bone marrow failure (BMF). As in many other BMF syndromes, SDS patients are predisposed to develop a number of haematopoietic malignancies, particularly myelodysplastic syndrome and acute myeloid leukaemia. However, the mechanism of cancer predisposition in SDS patients is only partially understood. In light of the emerging role of mesenchymal stromal cells (MSCs) in the regulation of bone marrow homeostasis, we assessed the ability of MSCs derived from SDS patients (SDS-MSCs) to recreate a functional bone marrow niche, taking advantage of a murine heterotopic MSC transplant model. We show that the ability of semi-cartilaginous pellets (SCPs) derived from SDS-MSCs to generate complete heterotopic ossicles in vivo is severely impaired in comparison with HD-MSC-derived SCPs. Specifically, after in vitro angiogenic stimuli, SDS-MSCs showed a defective ability to form correct networks, capillary tubes and vessels and displayed a marked decrease in VEGFA expression. Altogether, these findings unveil a novel mechanism of SDS-mediated haematopoietic dysfunction based on hampered ability of SDS-MSCs to support angiogenesis. Overall, MSCs could represent a new appealing therapeutic target to treat dysfunctional haematopoiesis in paediatric SDS patients.


Subject(s)
Bone Marrow Diseases/pathology , Bone Marrow/pathology , Exocrine Pancreatic Insufficiency/pathology , Lipomatosis/pathology , Mesenchymal Stem Cells/physiology , Neovascularization, Physiologic/physiology , Adolescent , Adult , Animals , Bone Marrow Cells/pathology , Bone Marrow Diseases/genetics , Bone Marrow Diseases/physiopathology , Cartilage/transplantation , Cell Differentiation , Cells, Cultured , Child , Child, Preschool , Chondrocytes/pathology , Chondrocytes/physiology , Chondrogenesis/physiology , Exocrine Pancreatic Insufficiency/genetics , Exocrine Pancreatic Insufficiency/physiopathology , Female , Hematopoiesis/physiology , Heterografts , Humans , Infant , Lipomatosis/genetics , Lipomatosis/physiopathology , Male , Mesenchymal Stem Cells/pathology , Mice, SCID , Shwachman-Diamond Syndrome , Young Adult
18.
N Engl J Med ; 373(3): 220-31, 2015 07 16.
Article in English | MEDLINE | ID: mdl-25981758

ABSTRACT

BACKGROUND: Cystic fibrosis is a life-limiting disease that is caused by defective or deficient cystic fibrosis transmembrane conductance regulator (CFTR) protein activity. Phe508del is the most common CFTR mutation. METHODS: We conducted two phase 3, randomized, double-blind, placebo-controlled studies that were designed to assess the effects of lumacaftor (VX-809), a CFTR corrector, in combination with ivacaftor (VX-770), a CFTR potentiator, in patients 12 years of age or older who had cystic fibrosis and were homozygous for the Phe508del CFTR mutation. In both studies, patients were randomly assigned to receive either lumacaftor (600 mg once daily or 400 mg every 12 hours) in combination with ivacaftor (250 mg every 12 hours) or matched placebo for 24 weeks. The primary end point was the absolute change from baseline in the percentage of predicted forced expiratory volume in 1 second (FEV1) at week 24. RESULTS: A total of 1108 patients underwent randomization and received study drug. The mean baseline FEV1 was 61% of the predicted value. In both studies, there were significant improvements in the primary end point in both lumacaftor-ivacaftor dose groups; the difference between active treatment and placebo with respect to the mean absolute improvement in the percentage of predicted FEV1 ranged from 2.6 to 4.0 percentage points (P<0.001), which corresponded to a mean relative treatment difference of 4.3 to 6.7% (P<0.001). Pooled analyses showed that the rate of pulmonary exacerbations was 30 to 39% lower in the lumacaftor-ivacaftor groups than in the placebo group; the rate of events leading to hospitalization or the use of intravenous antibiotics was lower in the lumacaftor-ivacaftor groups as well. The incidence of adverse events was generally similar in the lumacaftor-ivacaftor and placebo groups. The rate of discontinuation due to an adverse event was 4.2% among patients who received lumacaftor-ivacaftor versus 1.6% among those who received placebo. CONCLUSIONS: These data show that lumacaftor in combination with ivacaftor provided a benefit for patients with cystic fibrosis homozygous for the Phe508del CFTR mutation. (Funded by Vertex Pharmaceuticals and others; TRAFFIC and TRANSPORT ClinicalTrials.gov numbers, NCT01807923 and NCT01807949.).


Subject(s)
Aminophenols/administration & dosage , Aminopyridines/administration & dosage , Benzodioxoles/administration & dosage , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Quinolones/administration & dosage , Adolescent , Adult , Aminophenols/adverse effects , Aminopyridines/adverse effects , Benzodioxoles/adverse effects , Child , Cystic Fibrosis/genetics , Double-Blind Method , Drug Therapy, Combination , Female , Forced Expiratory Volume/drug effects , Homozygote , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Mutation , Quinolones/adverse effects , Young Adult
19.
Am J Hematol ; 93(4): 527-536, 2018 08.
Article in English | MEDLINE | ID: mdl-29285795

ABSTRACT

Shwachman-Diamond syndrome (SDS) is a rare inherited recessive disease mainly caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene, which encodes for the homonymous protein SBDS, whose function still remains to be fully established. SDS affects several organs causing bone marrow failure, exocrine pancreatic insufficiency, skeletal malformations, and cognitive disorders. About 15% of SDS patients develop myelodysplastic syndrome (MDS) and are at higher risk of developing acute myeloid leukemia (AML). Deficiency in SBDS expression has been associated with increased apoptosis and lack of myeloid differentiation in bone marrow hematopoietic progenitors. Importantly, most SDS patients carry nonsense mutations in SBDS. Since ataluren is a well-characterized small molecule inhibitor that can suppress nonsense mutations, here, we have assessed the efficacy of this drug in restoring SBDS expression in hematopoietic cells obtained from a cohort of SDS patients. Remarkably, we show that ataluren treatment readily restores SBDS protein expression in different cell types, particularly bone marrow stem cells. Furthermore, ataluren promotes myeloid differentiation in hematopoietic progenitors, reduces apoptotic rate in primary PBMCs, and brings mammalian target of rapamycin phosphorylation levels back to normal in both lymphoblasts and bone marrow mesenchymal stromal cells (BM-MSCs). Since a specific therapy against SDS is currently lacking, these results provide the rationale for ataluren repurposing clinical trials.


Subject(s)
Bone Marrow Cells/metabolism , Bone Marrow Diseases/metabolism , Exocrine Pancreatic Insufficiency/metabolism , Lipomatosis/metabolism , Oxadiazoles/pharmacology , Proteins/genetics , Apoptosis/drug effects , Bone Marrow Diseases/pathology , Cells, Cultured , Codon, Nonsense/drug effects , Colony-Forming Units Assay , Exocrine Pancreatic Insufficiency/pathology , Gene Expression Regulation/drug effects , Humans , Lipomatosis/pathology , Monocytes/cytology , Monocytes/drug effects , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Shwachman-Diamond Syndrome , TOR Serine-Threonine Kinases/metabolism
20.
Genes Chromosomes Cancer ; 56(1): 51-58, 2017 01.
Article in English | MEDLINE | ID: mdl-27553422

ABSTRACT

Shwachman-Diamond syndrome (SDS) (OMIM 260400) is a rare autosomal recessive disease characterized by exocrine pancreatic insufficiency, skeletal, and hematological abnormalities and bone marrow (BM) dysfunction. Mutations in the SBDS gene cause SDS. Clonal chromosome anomalies are often present in BM, i(7)(q10) and del(20q) being the most frequent ones. We collected 6 SDS cases with del(20q): a cluster of imprinted genes, including L3MBTL1 and SGK2 is present in the deleted region. Only the paternal allele is expressed for these genes. Based on these data, we made the hypothesis that the loss of this region, in relation to parental origin of deletion, may be of relevance for the hematological phenotype. By comparing hematological data of our 6 cases with a group of 20 SDS patients without evidence of del(20q) in BM, we observed a significant difference for Hb levels (P < 0.012), and a difference slightly above the significance level for RBC counts (P < 0.053): in both cases the values were higher in patients with del(20q). We also report preliminary evidence for an increased number of BFU-E colonies in cases with paternal deletion, data on the presence of the deletion in colonies and in mature circulating lymphocytes. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bone Marrow Diseases/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Human, Pair 20/genetics , Exocrine Pancreatic Insufficiency/genetics , Genomic Imprinting , Immediate-Early Proteins/genetics , Lipomatosis/genetics , Protein Serine-Threonine Kinases/genetics , Sequence Deletion , Biomarkers, Tumor , Chromosome Aberrations , Follow-Up Studies , Humans , Mutation/genetics , Neoplasm Staging , Phenotype , Prognosis , Repressor Proteins , Retrospective Studies , Shwachman-Diamond Syndrome , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL