Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Plant Cell Rep ; 36(4): 611-620, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28204911

ABSTRACT

KEY MESSAGE: The genetic substitution of transformation amenability alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars. Barley (Hordeum vulgare) cv. 'Golden Promise' is one of the most useful and well-studied cultivars for genetic manipulation. In a previous report, we identified several transformation amenability (TFA) loci responsible for Agrobacterium-mediated transformation using the F2 generation of immature embryos, derived from 'Haruna Nijo' × 'Golden Promise,' as explants. In this report, we describe higher density mapping of these TFA regions with additional SNP markers using the same transgenic plants. To demonstrate the robustness of transformability alleles at the TFA loci, we genotyped 202 doubled haploid progeny from the cross 'Golden Promise' × 'Full Pint.' Based on SNP genotype, we selected lines having 'Golden Promise' alleles at TFA loci and used them for transformation. Of the successfully transformed lines, DH120366 came the closest to achieving a level of transformation efficiency comparable to 'Golden Promise.' The results validate that the genetic substitution of TFA alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars.


Subject(s)
Haplotypes/genetics , Hordeum/genetics , Plant Proteins/genetics , Agrobacterium tumefaciens/genetics , Chromosome Mapping , Genotype , Haploidy , Seeds/genetics , Transformation, Genetic/genetics
2.
Theor Appl Genet ; 126(2): 335-47, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23052020

ABSTRACT

Fall-sown barley will be increasingly important in the era of climate change due to higher yield potential and efficient use of water resources. Resistance/tolerance to abiotic stresses will be critical, and foremost among the abiotic stresses is low temperature. Simultaneous gene discovery and breeding will accelerate the development of agronomically relevant fall-sown barley germplasm with resistance to low temperature. We developed two doubled haploid mapping populations using two lines from the University of Nebraska (NE) and one line from Oregon State University (OR): NB3437f/OR71 (facultative × facultative) and NB713/OR71 (winter × facultative). Both were genotyped with a custom 384 oligonucleotide pool assay (OPA). QTL analyses were performed for low temperature tolerance (LTT) and vernalization sensitivity (VS). The role of VRN-H2 in VS was confirmed and a novel alternative winter allele at VRN-H3 was discovered in the Nebraska germplasm. FR-H2 was identified as a probable determinant of LTT and a new QTL, FR-H3, was discovered on chromosome 1H that accounted for up to 48 % of the phenotypic variation in field survival at St. Paul, MN, USA. The discovery of FR-H3 is a significant advancement in barley LTT genetics and will assist in developing the next generation of fall-sown varieties.


Subject(s)
Adaptation, Biological/genetics , Cold Temperature , Genes, Plant/genetics , Hordeum/growth & development , Hordeum/genetics , Quantitative Trait Loci , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Genetic Linkage , Genotype , Nebraska , Oregon , Phenotype , Seasons
3.
BMC Genomics ; 12: 4, 2011 Jan 04.
Article in English | MEDLINE | ID: mdl-21205322

ABSTRACT

BACKGROUND: Linkage maps are an integral resource for dissection of complex genetic traits in plant and animal species. Canonical map construction follows a well-established workflow: an initial discovery phase where genetic markers are mined from a small pool of individuals, followed by genotyping of selected mapping populations using sets of marker panels. A newly developed sequence-based marker technology, Restriction site Associated DNA (RAD), enables synchronous single nucleotide polymorphism (SNP) marker discovery and genotyping using massively parallel sequencing. The objective of this research was to assess the utility of RAD markers for linkage map construction, employing barley as a model system. Using the published high density EST-based SNP map in the Oregon Wolfe Barley (OWB) mapping population as a reference, we created a RAD map using a limited set of prior markers to establish linakge group identity, integrated the RAD and prior data, and used both maps for detection of quantitative trait loci (QTL). RESULTS: Using the RAD protocol in tandem with the Illumina sequence by synthesis platform, a total of 530 SNP markers were identified from initial scans of the OWB parental inbred lines--the "dominant" and "recessive" marker stocks--and scored in a 93 member doubled haploid (DH) mapping population. RAD sequence data from the structured population was converted into allele genotypes from which a genetic map was constructed. The assembled RAD-only map consists of 445 markers with an average interval length of 5 cM, while an integrated map includes 463 RAD loci and 2383 prior markers. Sequenced RAD markers are distributed across all seven chromosomes, with polymorphic loci emanating from both coding and noncoding regions in the Hordeum genome. Total map lengths are comparable and the order of common markers is identical in both maps. The same large-effect QTL for reproductive fitness traits were detected with both maps and the majority of these QTL were coincident with a dwarfing gene (ZEO) and the VRS1 gene, which determines the two-row and six-row germplasm groups of barley. CONCLUSIONS: We demonstrate how sequenced RAD markers can be leveraged to produce high quality linkage maps for detection of single gene loci and QTLs. By combining SNP discovery and genotyping into parallel sequencing events, RAD markers should be a useful molecular breeding tool for a range of crop species. Expected improvements in cost and throughput of second and third-generation sequencing technologies will enable more powerful applications of the sequenced RAD marker system, including improvements in de novo genome assembly, development of ultra-high density genetic maps and association mapping.


Subject(s)
Hordeum/genetics , Quantitative Trait Loci , Chromosome Mapping , Expressed Sequence Tags , Genome, Plant , Polymorphism, Single Nucleotide
4.
Methods Mol Biol ; 2287: 187-197, 2021.
Article in English | MEDLINE | ID: mdl-34270030

ABSTRACT

The production of doubled haploids (DHs) has proved to be a highly valuable tool to obtain new cultivars. Among the cereals, barley (Hordeum vulgare L.) is the most successful species in large-scale haploid production. Techniques employed for this purpose are based on either the gynogenetic or the androgenetic pathway. Interspecific cross with Hordeum bulbosum L., haploid gene inducer (the hap gene), ovary culture, anther culture (AC), and isolated microspore culture (IMC) are the most used methods. Among all of them, IMC is regarded as a particularly effective system owing to the great increase in green plant numbers per spike and also the higher induction of chromosome doubling when compared with other methods. Thus, IMC provides the best way to mass scale production of new varieties.


Subject(s)
Chromosomes, Plant , Gametogenesis, Plant , Hordeum/growth & development , Tissue Culture Techniques/methods , Culture Media , Haploidy , Hordeum/genetics , Pollen/genetics , Pollen/growth & development
5.
Plant Cell Rep ; 28(5): 727-35, 2009 May.
Article in English | MEDLINE | ID: mdl-19288107

ABSTRACT

The objective of this study was to produce durum wheat doubled haploid (DH) plants through the induction of microspore embryogenesis. The microspore culture technique was improved to maximize production of green plants per spike using three commercial cultivars. Studies on factors such as induction media composition, induction media support and the stage and growth of donor plants were carried out in order to develop an efficient protocol to regenerate green and fertile DH plants. Microspores were plated on a C(17) induction culture medium with ovary co-culture and a supplement of glutathione plus glutamine; 300 g/l Ficoll Type-400 was incorporated to the induction medium support. Donor plants were fertilized with a combination of macro and microelements. With the cultivars 'Ciccio' and 'Claudio' an average of 36.5 and 148.5 fertile plants were produced, respectively, from 1,000 anthers inoculated. This technique was then used to produce fertile DH plants of potential agronomic interest from a collection of ten F(1) crosses involving cultivars of high breeding value. From these crosses 849 green plants were obtained and seed was harvested from 702 plants indicating that 83% of green plants were fertile and therefore were spontaneously DHs. No aneuploid plant was obtained. The 702 plants yielded enough seeds to be field tested. One of the DH lines obtained by microspore embryogenesis, named 'Lanuza', has been sent to the Spanish Plant Variety Office for Registration by the Batlle Seed Company. This protocol can be used instead of the labor-intensive inter-generic crossing with maize as an economically feasible method to obtain DHs for most crosses involving the durum wheat cultivars grown in Spain.


Subject(s)
Culture Media , Haploidy , Tissue Culture Techniques/methods , Triticum/growth & development , Crosses, Genetic , Fertilization , Flowers/embryology , Flowers/genetics , Flowers/growth & development , Regeneration , Seeds/growth & development , Triticum/embryology , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL