Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Cell ; 155(1): 172-87, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24074867

ABSTRACT

Mitofusin 2 (MFN2) plays critical roles in both mitochondrial fusion and the establishment of mitochondria-endoplasmic reticulum (ER) interactions. Hypothalamic ER stress has emerged as a causative factor for the development of leptin resistance, but the underlying mechanisms are largely unknown. Here, we show that mitochondria-ER contacts in anorexigenic pro-opiomelanocortin (POMC) neurons in the hypothalamus are decreased in diet-induced obesity. POMC-specific ablation of Mfn2 resulted in loss of mitochondria-ER contacts, defective POMC processing, ER stress-induced leptin resistance, hyperphagia, reduced energy expenditure, and obesity. Pharmacological relieve of hypothalamic ER stress reversed these metabolic alterations. Our data establish MFN2 in POMC neurons as an essential regulator of systemic energy balance by fine-tuning the mitochondrial-ER axis homeostasis and function. This previously unrecognized role for MFN2 argues for a crucial involvement in mediating ER stress-induced leptin resistance.


Subject(s)
Endoplasmic Reticulum Stress , GTP Phosphohydrolases/metabolism , Neurons/metabolism , Obesity/metabolism , Animals , Hypothalamus/metabolism , Leptin/metabolism , Mice , Mice, Inbred C57BL , Neurons/cytology , Pro-Opiomelanocortin/metabolism
2.
PLoS Biol ; 21(8): e3002171, 2023 08.
Article in English | MEDLINE | ID: mdl-37616199

ABSTRACT

Modern lifestyle is associated with a major consumption of ultra-processed foods (UPF) due to their practicality and palatability. The ingestion of emulsifiers, a main additive in UPFs, has been related to gut inflammation, microbiota dysbiosis, adiposity, and obesity. Maternal unbalanced nutritional habits during embryonic and perinatal stages perturb offspring's long-term metabolic health, thus increasing obesity and associated comorbidity risk. However, whether maternal emulsifier consumption influences developmental programming in the offspring remains unknown. Here, we show that, in mice, maternal consumption of dietary emulsifiers (1% carboxymethyl cellulose (CMC) and 1% P80 in drinking water), during gestation and lactation, perturbs the development of hypothalamic energy balance regulation centers of the progeny, leads to metabolic impairments, cognition deficits, and induces anxiety-like traits in a sex-specific manner. Our findings support the notion that maternal consumption of emulsifiers, common additives of UPFs, causes mild metabolic and neuropsychological malprogramming in the progeny. Our data call for nutritional advice during gestation.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Female , Pregnancy , Male , Animals , Mice , Obesity/etiology , Anxiety , Dysbiosis
3.
Proc Natl Acad Sci U S A ; 120(15): e2218142120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37023123

ABSTRACT

The internal state of an animal, including homeostatic requirements, modulates its behavior. Negative energy balance stimulates hunger, thus promoting a range of actions aimed at obtaining food. While these survival actions are well established, the influence of the energy status on prosocial behavior remains unexplored. We developed a paradigm to assess helping behavior in which a free mouse was faced with a conspecific trapped in a restrainer. We measured the willingness of the free mouse to liberate the confined mouse under diverse metabolic conditions. Around 42% of ad libitum-fed mice exhibited a helping behavior, as evidenced by the reduction in the latencies to release the trapped cagemate. This behavior was independent of subsequent social contact reward and was associated with changes in corticosterone indicative of emotional contagion. This decision-making process was coupled with reduced blood glucose excursions and higher Adenosine triphosphate (ATP):Adenosine diphosphate (ADP) ratios in the forebrain of helper mice, suggesting that it was a highly energy-demanding process. Interestingly, chronic (food restriction and type 2 diabetes) and acute (chemogenetic activation of hunger-promoting AgRP neurons) situations mimicking organismal negative energy balance and enhanced appetite attenuated helping behavior toward a distressed conspecific. To investigate similar effects in humans, we estimated the influence of glycated hemoglobin (a surrogate of long-term glycemic control) on prosocial behavior (namely charity donation) using the Understanding Society dataset. Our results evidenced that organismal energy status markedly influences helping behavior and that hypothalamic AgRP neurons are at the interface of metabolism and prosocial behavior.


Subject(s)
Energy Metabolism , Helping Behavior , Animals , Mice , Blood Glucose/metabolism , Adenosine Triphosphate/metabolism , Adenosine Diphosphate/metabolism , Prosencephalon/metabolism , Hunger , Glycated Hemoglobin/analysis , Hypothalamus/metabolism , Glycemic Control , Mice, Inbred C57BL , Male , Humans , Charities , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Streptozocin
4.
J Neuroinflammation ; 20(1): 207, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37691115

ABSTRACT

Vascular endothelial function is challenged during cerebral ischemia and reperfusion. The endothelial responses are involved in inflammatory leukocyte attraction, adhesion and infiltration, blood-brain barrier leakage, and angiogenesis. This study investigated gene expression changes in brain endothelial cells after acute ischemic stroke using transcriptomics and translatomics. We isolated brain endothelial mRNA by: (i) translating ribosome affinity purification, enabling immunoprecipitation of brain endothelial ribosome-attached mRNA for translatome sequencing and (ii) isolating CD31+ endothelial cells by fluorescence-activating cell sorting for classical transcriptomic analysis. Both techniques revealed similar pathways regulated by ischemia but they showed specific differences in some transcripts derived from non-endothelial cells. We defined a gene set characterizing the endothelial response to acute stroke (24h) by selecting the differentially expressed genes common to both techniques, thus corresponding with the translatome and minimizing non-endothelial mRNA contamination. Enriched pathways were related to inflammation and immunoregulation, angiogenesis, extracellular matrix, oxidative stress, and lipid trafficking and storage. We validated, by flow cytometry and immunofluorescence, the protein expression of several genes encoding cell surface proteins. The inflammatory response was associated with the endothelial upregulation of genes related to lipid storage functions and we identified lipid droplet biogenesis in the endothelial cells after ischemia. The study reports a robust translatomic signature of brain endothelial cells after acute stroke and identifies enrichment in novel pathways involved in membrane signaling and lipid storage. Altogether these results highlight the endothelial contribution to the inflammatory response, and identify novel molecules that could be targets to improve vascular function after ischemic stroke.


Subject(s)
Ischemic Stroke , Stroke , Humans , Ischemic Stroke/genetics , Transcriptome , Brain , Stroke/genetics , Lipids
5.
J Hepatol ; 76(1): 11-24, 2022 01.
Article in English | MEDLINE | ID: mdl-34555423

ABSTRACT

BACKGROUND & AIMS: Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to non-alcoholic fatty liver disease (NAFLD) remains unknown. METHODS: By performing proteomic analysis on livers from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples from patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the livers of mice. RESULTS: ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and non-alcoholic steatohepatitis) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoyltransferase 1a (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action. CONCLUSIONS: Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis. LAY SUMMARY: We show that autophagy-related gene 3 (ATG3) contributes to the progression of non-alcoholic fatty liver disease in humans and mice. Hepatic knockdown of ATG3 ameliorates the development of NAFLD by stimulating mitochondrial function. Thus, ATG3 is an important factor implicated in steatosis.


Subject(s)
Autophagy-Related Proteins/antagonists & inhibitors , Fatty Liver/prevention & control , Mitochondria, Liver/metabolism , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Animals , Autophagy-Related Proteins/pharmacology , Disease Models, Animal , Fatty Liver/physiopathology , Lipid Metabolism/genetics , Mice , Mitochondria, Liver/physiology , Proteomics/methods , Ubiquitin-Conjugating Enzymes/pharmacology
6.
Circulation ; 142(7): 688-704, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32466671

ABSTRACT

BACKGROUND: Pericytes regulate vessel stabilization and function, and their loss is associated with diseases such as diabetic retinopathy or cancer. Despite their physiological importance, pericyte function and molecular regulation during angiogenesis remain poorly understood. METHODS: To decipher the transcriptomic programs of pericytes during angiogenesis, we crossed Pdgfrb(BAC)-CreERT2 mice into RiboTagflox/flox mice. Pericyte morphological changes were assessed in mural cell-specific R26-mTmG reporter mice, in which low doses of tamoxifen allowed labeling of single-cell pericytes at high resolution. To study the role of phosphoinositide 3-kinase (PI3K) signaling in pericyte biology during angiogenesis, we used genetic mouse models that allow selective inactivation of PI3Kα and PI3Kß isoforms and their negative regulator phosphate and tensin homolog deleted on chromosome 10 (PTEN) in mural cells. RESULTS: At the onset of angiogenesis, pericytes exhibit molecular traits of cell proliferation and activated PI3K signaling, whereas during vascular remodeling, pericytes upregulate genes involved in mature pericyte cell function, together with a remarkable decrease in PI3K signaling. Immature pericytes showed stellate shape and high proliferation, and mature pericytes were quiescent and elongated. Unexpectedly, we demonstrate that PI3Kß, but not PI3Kα, regulates pericyte proliferation and maturation during vessel formation. Genetic PI3Kß inactivation in pericytes triggered early pericyte maturation. Conversely, unleashing PI3K signaling by means of PTEN deletion delayed pericyte maturation. Pericyte maturation was necessary to undergo vessel remodeling during angiogenesis. CONCLUSIONS: Our results identify new molecular and morphological traits associated with pericyte maturation and uncover PI3Kß activity as a checkpoint to ensure appropriate vessel formation. In turn, our results may open new therapeutic opportunities to regulate angiogenesis in pathological processes through the manipulation of pericyte PI3Kß activity.


Subject(s)
Neovascularization, Physiologic , Pericytes/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Vascular Remodeling , Animals , Mice , Mice, Transgenic , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics
7.
Gut ; 72(4): 610-611, 2023 04.
Article in English | MEDLINE | ID: mdl-35961769

Subject(s)
Defensins , Humans
8.
Mol Metab ; 79: 101840, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036170

ABSTRACT

OBJECTIVE: Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance. METHODS: Central FFAR1 agonism and virogenic knockdown were performed in mice. Energy balance studies, infrared thermographic analysis of brown adipose tissue (BAT) and molecular analysis of the hypothalamus, BAT, white adipose tissue (WAT) and liver were carried out. RESULTS: Pharmacological stimulation of FFAR1, using central administration of its agonist TUG-905 in diet-induced obese mice, decreases body weight and is associated with increased energy expenditure, BAT thermogenesis and browning of subcutaneous WAT (sWAT), as well as reduced AMP-activated protein kinase (AMPK) levels, reduced inflammation, and decreased endoplasmic reticulum (ER) stress in the hypothalamus. As FFAR1 is expressed in distinct hypothalamic neuronal subpopulations, we used an AAV vector expressing a shRNA to specifically knockdown Ffar1 in proopiomelanocortin (POMC) neurons of the arcuate nucleus of the hypothalamus (ARC) of obese mice. Our data showed that knockdown of Ffar1 in POMC neurons promoted hyperphagia and body weight gain. In parallel, these mice developed hepatic insulin resistance and steatosis. CONCLUSIONS: FFAR1 emerges as a new hypothalamic nutrient sensor regulating whole body energy balance. Moreover, pharmacological activation of FFAR1 could provide a therapeutic advance in the management of obesity and its associated metabolic disorders.


Subject(s)
Fatty Acids, Nonesterified , Pro-Opiomelanocortin , Mice , Animals , Fatty Acids, Nonesterified/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Mice, Obese , Body Weight , Hypothalamus/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Energy Metabolism/physiology
9.
Nat Rev Endocrinol ; 19(10): 564-580, 2023 10.
Article in English | MEDLINE | ID: mdl-37525006

ABSTRACT

Eating behaviours are determined by the integration of interoceptive and environmental inputs. During pregnancy, numerous physiological adaptations take place in the maternal organism to provide an adequate environment for embryonic growth. Among them, whole-body physiological remodelling directly influences eating patterns, commonly causing notable taste perception alterations, food aversions and cravings. Recurrent food cravings for and compulsive eating of highly palatable food can contribute to the development and maintenance of gestational overweight and obesity with potential adverse health consequences for the offspring. Although much is known about how maternal eating habits influence offspring health, the mechanisms that underlie changes in taste perception and food preference during pregnancy (which guide and promote feeding) are only just starting to be elucidated. Given the limited and diffuse understanding of the neurobiology of gestational eating patterns, the aim of this Review is to compile, integrate and discuss the research conducted on this topic in both experimental models and humans. This article sheds light on the mechanisms that drive changes in female feeding behaviours during distinct physiological states. Understanding these processes is crucial to improve gestational parent health and decrease the burden of metabolic and food-related diseases in future generations.


Subject(s)
Feeding Behavior , Obesity , Pregnancy , Humans , Female , Obesity/metabolism , Food Preferences
10.
J Clin Invest ; 119(1): 125-35, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19065050

ABSTRACT

Defective insulin secretion in response to glucose is an important component of the beta cell dysfunction seen in type 2 diabetes. As mitochondrial oxidative phosphorylation plays a key role in glucose-stimulated insulin secretion (GSIS), oxygen-sensing pathways may modulate insulin release. The von Hippel-Lindau (VHL) protein controls the degradation of hypoxia-inducible factor (HIF) to coordinate cellular and organismal responses to altered oxygenation. To determine the role of this pathway in controlling glucose-stimulated insulin release from pancreatic beta cells, we generated mice lacking Vhl in pancreatic beta cells (betaVhlKO mice) and mice lacking Vhl in the pancreas (PVhlKO mice). Both mouse strains developed glucose intolerance with impaired insulin secretion. Furthermore, deletion of Vhl in beta cells or the pancreas altered expression of genes involved in beta cell function, including those involved in glucose transport and glycolysis, and isolated betaVhlKO and PVhlKO islets displayed impaired glucose uptake and defective glucose metabolism. The abnormal glucose homeostasis was dependent on upregulation of Hif-1alpha expression, and deletion of Hif1a in Vhl-deficient beta cells restored GSIS. Consistent with this, expression of activated Hif-1alpha in a mouse beta cell line impaired GSIS. These data suggest that VHL/HIF oxygen-sensing mechanisms play a critical role in glucose homeostasis and that activation of this pathway in response to decreased islet oxygenation may contribute to beta cell dysfunction.


Subject(s)
Glucose/metabolism , Homeostasis , Insulin-Secreting Cells/metabolism , Von Hippel-Lindau Tumor Suppressor Protein , Animals , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 2/metabolism , Insulin/metabolism , Insulin-Secreting Cells/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
11.
Nature ; 441(7091): 366-70, 2006 May 18.
Article in English | MEDLINE | ID: mdl-16625210

ABSTRACT

The eight catalytic subunits of the mammalian phosphoinositide-3-OH kinase (PI(3)K) family form the backbone of an evolutionarily conserved signalling pathway; however, the roles of most PI(3)K isoforms in organismal physiology and disease are unknown. To delineate the role of p110alpha, a ubiquitously expressed PI(3)K involved in tyrosine kinase and Ras signalling, here we generated mice carrying a knockin mutation (D933A) that abrogates p110alpha kinase activity. Homozygosity for this kinase-dead p110alpha led to embryonic lethality. Mice heterozygous for this mutation were viable and fertile, but displayed severely blunted signalling via insulin-receptor substrate (IRS) proteins, key mediators of insulin, insulin-like growth factor-1 and leptin action. Defective responsiveness to these hormones led to reduced somatic growth, hyperinsulinaemia, glucose intolerance, hyperphagia and increased adiposity in mice heterozygous for the D933A mutation. This signalling function of p110alpha derives from its highly selective recruitment and activation to IRS signalling complexes compared to p110beta, the other broadly expressed PI(3)K isoform, which did not contribute to IRS-associated PI(3)K activity. p110alpha was the principal IRS-associated PI(3)K in cancer cell lines. These findings demonstrate a critical role for p110alpha in growth factor and metabolic signalling and also suggest an explanation for selective mutation or overexpression of p110alpha in a variety of cancers.


Subject(s)
Growth/physiology , Insulin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adiposity , Animals , Body Weight , Catalytic Domain , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Eating , Embryo Loss/enzymology , Embryo Loss/genetics , Embryo Loss/metabolism , Enzyme Activation , Glucose/metabolism , Heterozygote , Homozygote , Hyperinsulinism/metabolism , Insulin Receptor Substrate Proteins , Leptin/metabolism , Mice , Mutation/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/deficiency , Phosphatidylinositol 3-Kinases/genetics , Phosphoproteins/metabolism , Receptor, Insulin/metabolism , Signal Transduction
12.
Nat Metab ; 4(4): 424-434, 2022 04.
Article in English | MEDLINE | ID: mdl-35379970

ABSTRACT

Preparation for motherhood requires a myriad of physiological and behavioural adjustments throughout gestation to provide an adequate environment for proper embryonic development1. Cravings for highly palatable foods are highly prevalent during pregnancy2 and contribute to the maintenance and development of gestational overweight or obesity3. However, the neurobiology underlying the distinct ingestive behaviours that result from craving specific foods remain unknown. Here we show that mice, similarly to humans, experience gestational food craving-like episodes. These episodes are associated with a brain connectivity reorganization that affects key components of the dopaminergic mesolimbic circuitry, which drives motivated appetitive behaviours and facilitates the perception of rewarding stimuli. Pregnancy engages a dynamic modulation of dopaminergic signalling through neurons expressing dopamine D2 receptors in the nucleus accumbens, which directly modulate food craving-like events. Importantly, persistent maternal food craving-like behaviour has long-lasting effects on the offspring, particularly in males, leading to glucose intolerance, increased body weight and increased susceptibility to develop eating disorders and anxiety-like behaviours during adulthood. Our results reveal the cognitively motivated nature of pregnancy food cravings and advocates for moderating emotional eating during gestation to prevent deterioration of the offspring's neuropsychological and metabolic health.


Subject(s)
Craving , Eating , Animals , Craving/physiology , Dopamine/metabolism , Female , Food Preferences/psychology , Male , Mice , Obesity/metabolism , Pregnancy , Weight Gain
13.
Cell Metab ; 34(2): 269-284.e9, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108514

ABSTRACT

Obesity and type 2 diabetes are associated with cognitive dysfunction. Because the hypothalamus is implicated in energy balance control and memory disorders, we hypothesized that specific neurons in this brain region are at the interface of metabolism and cognition. Acute obesogenic diet administration in mice impaired recognition memory due to defective production of the neurosteroid precursor pregnenolone in the hypothalamus. Genetic interference with pregnenolone synthesis by Star deletion in hypothalamic POMC, but not AgRP neurons, deteriorated recognition memory independently of metabolic disturbances. Our data suggest that pregnenolone's effects on cognitive function were mediated via an autocrine mechanism on POMC neurons, influencing hippocampal long-term potentiation. The relevance of central pregnenolone on cognition was also confirmed in metabolically unhealthy patients with obesity. Our data reveal an unsuspected role for POMC neuron-derived neurosteroids in cognition. These results provide the basis for a framework to investigate new facets of POMC neuron biology with implications for cognitive disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Diseases , Animals , Diabetes Mellitus, Type 2/metabolism , Humans , Hypothalamus/metabolism , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Pregnenolone/metabolism , Pro-Opiomelanocortin/metabolism
14.
Nat Metab ; 4(3): 327-343, 2022 03.
Article in English | MEDLINE | ID: mdl-35288722

ABSTRACT

Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid ß-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism.


Subject(s)
Adiposity , Endothelial Cells , Animals , Endothelial Cells/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism , Polyamines
15.
Science ; 377(6610): eabq4515, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36048943

ABSTRACT

At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.


Subject(s)
Cognition , Cognitive Dysfunction , Down Syndrome , Gonadotropin-Releasing Hormone , Olfaction Disorders , Adult , Animals , Cognition/drug effects , Cognition/physiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Disease Models, Animal , Down Syndrome/complications , Down Syndrome/drug therapy , Down Syndrome/psychology , Female , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/physiology , Gonadotropin-Releasing Hormone/therapeutic use , Humans , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Middle Aged , Olfaction Disorders/drug therapy , Olfaction Disorders/etiology , Synaptic Transmission/drug effects , Young Adult
16.
Redox Biol ; 54: 102353, 2022 08.
Article in English | MEDLINE | ID: mdl-35777200

ABSTRACT

Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.


Subject(s)
Insulin Resistance , Adipose Tissue/metabolism , Animals , Homeostasis , Intra-Abdominal Fat/metabolism , Mice , Obesity/genetics , Obesity/metabolism , Proteomics
17.
J Clin Invest ; 131(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34523613

ABSTRACT

Tanycytes are specialized radial glial cells of the hypothalamus that have emerged as important players that sense and respond to fluctuations in whole-body energy status to maintain energy homeostasis. However, the underlying mechanisms by which tanycytes influence energy balance remain incompletely understood. In this issue of the JCI, Lhomme et al. used transgenic mouse models, pharmacological approaches, and electrophysiology to investigate how tanycytes sense glucose availability and integrate metabolic cues into a lactate tanycytic network that fuels pro-opiomelanocortin (POMC) neuronal activity. Notably, the authors found that the tanycytic network relied on monocarboxylate transporters and connexin-43 gap junctions to transfer lactate to POMC neurons. Collectively, this study places tanycytes at the center of the intercellular communication processes governing energy balance.


Subject(s)
Ependymoglial Cells , Hypothalamus , Animals , Energy Metabolism , Hypothalamus/metabolism , Mice , Neurons/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism
18.
Mol Metab ; 53: 101251, 2021 11.
Article in English | MEDLINE | ID: mdl-34015524

ABSTRACT

OBJECTIVE: Pancreatic ß-cell dysfunction is a central feature in the pathogenesis of type 2 diabetes (T2D). Accumulating evidence indicates that ß-site APP-cleaving enzyme 2 (BACE2) inhibition exerts a beneficial effect on ß-cells in different models of T2D. Thus, targeting BACE2 may represent a potential therapeutic strategy for the treatment of this disease. Here, we aimed to investigate the effects of BACE2 suppression on glucose homeostasis in a model of diet-induced obesity. METHODS: BACE2 knock-out (BKO) and wild-type (WT) mice were fed with a high-fat diet (HFD) for 2 or 16 weeks. Body weight, food intake, respiratory exchange ratio, locomotor activity, and energy expenditure were determined. Glucose homeostasis was evaluated by glucose and insulin tolerance tests. ß-cell proliferation was assessed by Ki67-positive nuclei, and ß-cell function was determined by measuring glucose-stimulated insulin secretion. Leptin sensitivity was evaluated by quantifying food intake and body weight after an intraperitoneal leptin injection. Neuropeptide gene expression and insulin signaling in the mediobasal hypothalamus were determined by qPCR and Akt phosphorylation, respectively. RESULTS: After 16 weeks of HFD feeding, BKO mice exhibited an exacerbated body weight gain and hyperphagia, in comparison to WT littermates. Glucose tolerance was similar in both groups, whereas HFD-induced hyperinsulinemia, insulin resistance, and ß-cell expansion were more pronounced in BKO mice. In turn, leptin-induced food intake inhibition and hypothalamic insulin signaling were impaired in BKO mice, regardless of the diet, in accordance with deregulation of the expression of hypothalamic neuropeptide genes. Importantly, BKO mice already showed increased ß-cell proliferation and glucose-stimulated insulin secretion with respect to WT littermates after two weeks of HFD feeding, before the onset of obesity. CONCLUSIONS: Collectively, these results reveal that BACE2 suppression in an obesogenic setting leads to exacerbated body weight gain, hyperinsulinemia, and insulin resistance. Thus, we conclude that inhibition of BACE2 may aggravate the adverse metabolic effects associated with obesity.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Obesity/metabolism , Animals , Diet/adverse effects , Male , Mice , Mice, Transgenic
19.
Nat Metab ; 3(3): 299-308, 2021 03.
Article in English | MEDLINE | ID: mdl-33633406

ABSTRACT

Hypothalamic AgRP and POMC neurons are conventionally viewed as the yin and yang of the body's energy status, since they act in an opposite manner to modulate appetite and systemic energy metabolism. However, although AgRP neurons' functions are comparatively well understood, a unifying theory of how POMC neuronal cells operate has remained elusive, probably due to their high level of heterogeneity, which suggests that their physiological roles might be more complex than initially thought. In this Perspective, we propose a conceptual framework that integrates POMC neuronal heterogeneity with appetite regulation, whole-body metabolic physiology and the development of obesity. We highlight emerging evidence indicating that POMC neurons respond to distinct combinations of interoceptive signals and food-related cues to fine-tune divergent metabolic pathways and behaviours necessary for survival. The new framework we propose reflects the high degree of developmental plasticity of this neuronal population and may enable progress towards understanding of both the aetiology and treatment of metabolic disorders.


Subject(s)
Energy Metabolism/physiology , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Agouti-Related Protein/metabolism , Animals , Humans , Mice , Pro-Opiomelanocortin/genetics , RNA, Messenger/metabolism , Receptor, Melanocortin, Type 4/metabolism
20.
Redox Biol ; 41: 101945, 2021 05.
Article in English | MEDLINE | ID: mdl-33744652

ABSTRACT

Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene that has emerged as an important player in the regulation of energy metabolism in peripheral tissues. However, its role in the hypothalamus has not been explored. Herein, we show that the genetic inhibition of SIRT3 in the hypothalamic arcuate nucleus (ARC) induced a negative energy balance and improvement of several metabolic parameters. These effects are specific for POMC neurons, because ablation of SIRT3 in POMC, but not in AgRP neurons, decreased body weight and adiposity, increased energy expenditure and brown adipose tissue (BAT) activity, and induced browning in white adipose tissue (WAT). Notably, the depletion of SIRT3 in POMC neurons caused these effects in male mice fed a chow diet but failed to affect energy balance in males fed a high fat diet and females under both type of diets. Overall, we provide the first evidence pointing for a key role of SIRT3 in POMC neurons in the regulation of energy balance.


Subject(s)
Pro-Opiomelanocortin , Sirtuin 3 , Adipose Tissue, Brown/metabolism , Animals , Diet, High-Fat , Energy Metabolism , Female , Male , Mice , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Sirtuin 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL