Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Cell ; 173(3): 624-633.e8, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29656892

ABSTRACT

CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.


Subject(s)
CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Epigenesis, Genetic , Germ-Line Mutation , Neoplasms/genetics , Neoplasms/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Autophagy , Cell Line, Tumor , DNA Methylation , Female , Gene Expression Profiling , Humans , Immunotherapy , Ipilimumab/pharmacology , Male , Melanoma/genetics , Melanoma/immunology , Melanoma-Specific Antigens/genetics , Melanoma-Specific Antigens/immunology , Mice , Mice, Transgenic , Skin Neoplasms/genetics , Skin Neoplasms/immunology
2.
Mol Cell ; 79(1): 11-29, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32619467

ABSTRACT

The CRISPR-Cas system offers a programmable platform for eukaryotic genome and epigenome editing. The ability to perform targeted genetic and epigenetic perturbations enables researchers to perform a variety of tasks, ranging from investigating questions in basic biology to potentially developing novel therapeutics for the treatment of disease. While CRISPR systems have been engineered to target DNA and RNA with increased precision, efficiency, and flexibility, assays to identify off-target editing are becoming more comprehensive and sensitive. Furthermore, techniques to perform high-throughput genome and epigenome editing can be paired with a variety of readouts and are uncovering important cellular functions and mechanisms. These technological advances drive and are driven by accompanying computational approaches. Here, we briefly present available CRISPR technologies and review key computational advances and considerations for various CRISPR applications. In particular, we focus on the analysis of on- and off-target editing and CRISPR pooled screen data.


Subject(s)
CRISPR-Cas Systems , Computational Biology/methods , Epigenomics , Gene Editing , Genome, Human , Humans
3.
Nature ; 569(7757): 576-580, 2019 05.
Article in English | MEDLINE | ID: mdl-31092926

ABSTRACT

Genetic and epigenetic intra-tumoral heterogeneity cooperate to shape the evolutionary course of cancer1. Chronic lymphocytic leukaemia (CLL) is a highly informative model for cancer evolution as it undergoes substantial genetic diversification and evolution after therapy2,3. The CLL epigenome is also an important disease-defining feature4,5, and growing populations of cells in CLL diversify by stochastic changes in DNA methylation known as epimutations6. However, previous studies using bulk sequencing methods to analyse the patterns of DNA methylation were unable to determine whether epimutations affect CLL populations homogeneously. Here, to measure the epimutation rate at single-cell resolution, we applied multiplexed single-cell reduced-representation bisulfite sequencing to B cells from healthy donors and patients with CLL. We observed that the common clonal origin of CLL results in a consistently increased epimutation rate, with low variability in the cell-to-cell epimutation rate. By contrast, variable epimutation rates across healthy B cells reflect diverse evolutionary ages across the trajectory of B cell differentiation, consistent with epimutations serving as a molecular clock. Heritable epimutation information allowed us to reconstruct lineages at high-resolution with single-cell data, and to apply this directly to patient samples. The CLL lineage tree shape revealed earlier branching and longer branch lengths than in normal B cells, reflecting rapid drift after the initial malignant transformation and a greater proliferative history. Integration of single-cell bisulfite sequencing analysis with single-cell transcriptomes and genotyping confirmed that genetic subclones mapped to distinct clades, as inferred solely on the basis of epimutation information. Finally, to examine potential lineage biases during therapy, we profiled serial samples during ibrutinib-associated lymphocytosis, and identified clades of cells that were preferentially expelled from the lymph node after treatment, marked by distinct transcriptional profiles. The single-cell integration of genetic, epigenetic and transcriptional information thus charts the lineage history of CLL and its evolution with therapy.


Subject(s)
Cell Lineage , Epigenesis, Genetic , Evolution, Molecular , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Base Sequence , Biological Clocks , Cell Lineage/genetics , DNA Methylation , Epigenome/genetics , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mutation Rate , Sequence Analysis, RNA , Single-Cell Analysis , Transcription, Genetic
4.
Nature ; 561(7723): 416-419, 2018 09.
Article in English | MEDLINE | ID: mdl-30209390

ABSTRACT

CRISPR-Cas genome-editing nucleases hold substantial promise for developing human therapeutic applications1-6 but identifying unwanted off-target mutations is important for clinical translation7. A well-validated method that can reliably identify off-targets in vivo has not been described to date, which means it is currently unclear whether and how frequently these mutations occur. Here we describe 'verification of in vivo off-targets' (VIVO), a highly sensitive strategy that can robustly identify the genome-wide off-target effects of CRISPR-Cas nucleases in vivo. We use VIVO and a guide RNA deliberately designed to be promiscuous to show that CRISPR-Cas nucleases can induce substantial off-target mutations in mouse livers in vivo. More importantly, we also use VIVO to show that appropriately designed guide RNAs can direct efficient in vivo editing in mouse livers with no detectable off-target mutations. VIVO provides a general strategy for defining and quantifying the off-target effects of gene-editing nucleases in whole organisms, thereby providing a blueprint to foster the development of therapeutic strategies that use in vivo gene editing.


Subject(s)
CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , Gene Editing/methods , Gene Editing/standards , Genome/genetics , Mutation , Substrate Specificity/genetics , Animals , CRISPR-Associated Proteins/genetics , Female , Humans , INDEL Mutation , Male , Mice , Mice, Inbred C57BL , Proprotein Convertase 9/genetics , Transgenes/genetics
5.
Nature ; 549(7673): 543-547, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28959968

ABSTRACT

In mammals, the canonical somatic DNA methylation landscape is established upon specification of the embryo proper and subsequently disrupted within many cancer types. However, the underlying mechanisms that direct this genome-scale transformation remain elusive, with no clear model for its systematic acquisition or potential developmental utility. Here, we analysed global remethylation from the mouse preimplantation embryo into the early epiblast and extraembryonic ectoderm. We show that these two states acquire highly divergent genomic distributions with substantial disruption of bimodal, CpG density-dependent methylation in the placental progenitor. The extraembryonic epigenome includes specific de novo methylation at hundreds of embryonically protected CpG island promoters, particularly those that are associated with key developmental regulators and are orthologously methylated across most human cancer types. Our data suggest that the evolutionary innovation of extraembryonic tissues may have required co-option of DNA methylation-based suppression as an alternative to regulation by Polycomb-group proteins, which coordinate embryonic germ-layer formation in response to extraembryonic cues. Moreover, we establish that this decision is made deterministically, downstream of promiscuously used-and frequently oncogenic-signalling pathways, via a novel combination of epigenetic cofactors. Methylation of developmental gene promoters during tumorigenesis may therefore reflect the misappropriation of an innate trajectory and the spontaneous reacquisition of a latent, developmentally encoded epigenetic landscape.


Subject(s)
Blastocyst/cytology , Cell Lineage/genetics , DNA Methylation , Ectoderm/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Germ Layers/metabolism , Neoplasms/genetics , Animals , Blastocyst/metabolism , CpG Islands/genetics , Ectoderm/cytology , Female , Gene Expression Regulation, Neoplastic , Germ Layers/cytology , Humans , Male , Mice , Neoplasms/pathology , Placenta/cytology , Pregnancy , Promoter Regions, Genetic
6.
Nature ; 548(7666): 219-223, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28746311

ABSTRACT

Concomitant activation of the Wnt pathway and suppression of Mapk signalling by two small molecule inhibitors (2i) in the presence of leukaemia inhibitory factor (LIF) (hereafter termed 2i/L) induces a naive state in mouse embryonic stem (ES) cells that resembles the inner cell mass (ICM) of the pre-implantation embryo. Since the ICM exists only transiently in vivo, it remains unclear how sustained propagation of naive ES cells in vitro affects their stability and functionality. Here we show that prolonged culture of male mouse ES cells in 2i/L results in irreversible epigenetic and genomic changes that impair their developmental potential. Furthermore, we find that female ES cells cultured in conventional serum plus LIF medium phenocopy male ES cells cultured in 2i/L. Mechanistically, we demonstrate that the inhibition of Mek1/2 is predominantly responsible for these effects, in part through the downregulation of DNA methyltransferases and their cofactors. Finally, we show that replacement of the Mek1/2 inhibitor with a Src inhibitor preserves the epigenetic and genomic integrity as well as the developmental potential of ES cells. Taken together, our data suggest that, although short-term suppression of Mek1/2 in ES cells helps to maintain an ICM-like epigenetic state, prolonged suppression results in irreversible changes that compromise their developmental potential.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Animals , Blastocyst , Chromosomal Instability , DNA Methylation , Female , Genomic Imprinting , Karyotyping , Male , Mice
7.
Development ; 145(22)2018 11 21.
Article in English | MEDLINE | ID: mdl-30337375

ABSTRACT

Advances in stem cell science allow the production of different cell types in vitro either through the recapitulation of developmental processes, often termed 'directed differentiation', or the forced expression of lineage-specific transcription factors. Although cells produced by both approaches are increasingly used in translational applications, their quantitative similarity to their primary counterparts remains largely unresolved. To investigate the similarity between in vitro-derived and primary cell types, we harvested and purified mouse spinal motor neurons and compared them with motor neurons produced by transcription factor-mediated lineage conversion of fibroblasts or directed differentiation of pluripotent stem cells. To enable unbiased analysis of these motor neuron types and their cells of origin, we then subjected them to whole transcriptome and DNA methylome analysis by RNA sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS). Despite major differences in methodology, lineage conversion and directed differentiation both produce cells that closely approximate the primary motor neuron state. However, we identify differences in Fas signaling, the Hox code and synaptic gene expression between lineage-converted and directed differentiation motor neurons that affect their utility in translational studies.


Subject(s)
Cell Lineage/genetics , Embryo, Mammalian/cytology , Genomics , Motor Neurons/cytology , Pluripotent Stem Cells/cytology , Animals , Epigenesis, Genetic , Mice, Inbred C57BL , Motor Neurons/metabolism , Pluripotent Stem Cells/metabolism , Transcription, Genetic
8.
Nat Methods ; 15(9): 732-740, 2018 09.
Article in English | MEDLINE | ID: mdl-30127506

ABSTRACT

Human embryonic stem cells (hESCs) can be captured in a primed state in which they resemble the postimplantation epiblast, or in a naive state where they resemble the preimplantation epiblast. Naive-cell-specific culture conditions allow the study of preimplantation development ex vivo but reportedly lead to chromosomal abnormalities, which compromises their utility in research and potential therapeutic applications. Although MEK inhibition is essential for the naive state, here we show that reduced MEK inhibition facilitated the establishment and maintenance of naive hESCs that retained naive-cell-specific features, including global DNA hypomethylation, HERVK expression, and two active X chromosomes. We further show that hESCs cultured under these modified conditions proliferated more rapidly; accrued fewer chromosomal abnormalities; and displayed changes in the phosphorylation levels of MAPK components, regulators of DNA damage/repair, and cell cycle. We thus provide a simple modification to current methods that can enable robust growth and reduced genomic instability in naive hESCs.


Subject(s)
Embryonic Stem Cells/metabolism , Genomic Instability , MAP Kinase Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , DNA Methylation , Embryonic Stem Cells/enzymology , Humans , Proteome , Transcriptome
9.
Bioinformatics ; 34(13): i202-i210, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29949956

ABSTRACT

Motivation: Unique molecular identifiers (UMIs) are added to DNA fragments before PCR amplification to discriminate between alleles arising from the same genomic locus and sequencing reads produced by PCR amplification. While computational methods have been developed to take into account UMI information in genome-wide and single-cell sequencing studies, they are not designed for modern amplicon-based sequencing experiments, especially in cases of high allelic diversity. Importantly, no guidelines are provided for the design of optimal UMI length for amplicon-based sequencing experiments. Results: Based on the total number of DNA fragments and the distribution of allele frequencies, we present a model for the determination of the minimum UMI length required to prevent UMI collisions and reduce allelic distortion. We also introduce a user-friendly software tool called AmpUMI to assist in the design and the analysis of UMI-based amplicon sequencing studies. AmpUMI provides quality control metrics on frequency and quality of UMIs, and trims and deduplicates amplicon sequences with user specified parameters for use in downstream analysis. Availability and implementation: AmpUMI is open-source and freely available at http://github.com/pinellolab/AmpUMI.


Subject(s)
Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Models, Genetic , Sequence Analysis, DNA/methods , Software , Gene Frequency , Single-Cell Analysis/methods
12.
STAR Protoc ; 4(4): 102165, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37729058

ABSTRACT

Here, we present a protocol to generate B cell restricted mouse models of loss-of-function genetic drivers typical of lymphoproliferative disorders, using stem cell engineering of murine strains carrying B cell restricted Cas9 expression. We describe steps for preparing lentivirus expressing sgRNA-mCherry, isolating hematopoietic stem and progenitor cells, and in vitro transduction. We then detail the transplantation of engineered cells into recipient mice and verification of gene edits. These mouse models represent versatile platforms to model complex disease traits typical of lymphoproliferative disorders. For complete details on the use and execution of this protocol, please refer to ten Hacken et al.,1 ten Hacken et al.,2 and ten Hacken et al.3.


Subject(s)
Gene Editing , Lymphoproliferative Disorders , Mice , Animals , Gene Editing/methods , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Disease Models, Animal , Mutation , Lymphoproliferative Disorders/genetics
13.
Blood Cancer Discov ; 4(2): 150-169, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36468984

ABSTRACT

Transformation to aggressive disease histologies generates formidable clinical challenges across cancers, but biological insights remain few. We modeled the genetic heterogeneity of chronic lymphocytic leukemia (CLL) through multiplexed in vivo CRISPR-Cas9 B-cell editing of recurrent CLL loss-of-function drivers in mice and recapitulated the process of transformation from indolent CLL into large cell lymphoma [i.e., Richter syndrome (RS)]. Evolutionary trajectories of 64 mice carrying diverse combinatorial gene assortments revealed coselection of mutations in Trp53, Mga, and Chd2 and the dual impact of clonal Mga/Chd2 mutations on E2F/MYC and interferon signaling dysregulation. Comparative human and murine RS analyses demonstrated tonic PI3K signaling as a key feature of transformed disease, with constitutive activation of the AKT and S6 kinases, downmodulation of the PTEN phosphatase, and convergent activation of MYC/PI3K transcriptional programs underlying enhanced sensitivity to MYC/mTOR/PI3K inhibition. This robust experimental system presents a unique framework to study lymphoid biology and therapy. SIGNIFICANCE: Mouse models reflective of the genetic complexity and heterogeneity of human tumors remain few, including those able to recapitulate transformation to aggressive disease histologies. Herein, we model CLL transformation into RS through multiplexed in vivo gene editing, providing key insight into the pathophysiology and therapeutic vulnerabilities of transformed disease. This article is highlighted in the In This Issue feature, p. 101.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Humans , Animals , Mice , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Phosphatidylinositol 3-Kinases/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , B-Lymphocytes
14.
Cancer Res ; 83(2): 264-284, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36409824

ABSTRACT

Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell type in IBC and are commonly pSTAT3+. Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant cells revealed enrichment of genes associated with lineage identity and inflammation in chemotherapy-resistant derivatives. Integrated pSTAT3 chromatin immunoprecipitation sequencing and RNA sequencing (RNA-seq) analyses showed pSTAT3 regulates genes related to inflammation and epithelial-to-mesenchymal transition (EMT) in resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift from luminal to basal/mesenchymal cell states through selection for rare preexisting subpopulations or an acquired change. Finally, combination treatment with paclitaxel and JAK2/STAT3 inhibition prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a more effective therapeutic strategy in IBC. SIGNIFICANCE: Chemotherapy resistance in inflammatory breast cancer is driven by the JAK2/STAT3 pathway, in part via cAMP/PKA signaling and a cell state switch, which can be overcome using paclitaxel combined with JAK2 inhibitors.


Subject(s)
Breast Neoplasms , Inflammatory Breast Neoplasms , Humans , Female , Inflammatory Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Signal Transduction , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Stem Cells/metabolism , STAT3 Transcription Factor/metabolism
15.
bioRxiv ; 2023 May 27.
Article in English | MEDLINE | ID: mdl-37292647

ABSTRACT

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for ß-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here we compared combined CRISPR-Cas9 endonuclease editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. We found that combined targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two sgRNAs resulted in superior HbF induction, including in engrafting erythroid cells from sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers. We corroborated prior observations that double strand breaks (DSBs) could produce unintended on- target outcomes in hematopoietic stem and progenitor cells (HSPCs) such as long deletions and centromere-distal chromosome fragment loss. We show these unintended outcomes are a byproduct of cellular proliferation stimulated by ex vivo culture. Editing HSPCs without cytokine culture bypassed long deletion and micronuclei formation while preserving efficient on-target editing and engraftment function. These results indicate that nuclease editing of quiescent hematopoietic stem cells (HSCs) limits DSB genotoxicity while maintaining therapeutic potency and encourages efforts for in vivo delivery of nucleases to HSCs.

16.
Nat Biotechnol ; 40(2): 189-193, 2022 02.
Article in English | MEDLINE | ID: mdl-33927418

ABSTRACT

Prime editors have been delivered using DNA or RNA vectors. Here we demonstrate prime editing with purified ribonucleoprotein complexes. We introduced somatic mutations in zebrafish embryos with frequencies as high as 30% and demonstrate germline transmission. We also observed unintended insertions, deletions and prime editing guide RNA (pegRNA) scaffold incorporations. In HEK293T and primary human T cells, prime editing with purified ribonucleoprotein complexes introduced desired edits with frequencies of up to 21 and 7.5%, respectively.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Zebrafish , Animals , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing , HEK293 Cells , Humans , RNA, Guide, Kinetoplastida/genetics , Ribonucleoproteins/genetics , Zebrafish/genetics
17.
Bioinformatics ; 26(3): 423-5, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19965882

ABSTRACT

SUMMARY: Many online sources of gene interaction networks supply rich visual data regarding gene pathways that can aid in the study of biological processes, disease research and drug discovery. PathGen incorporates data from several sources to create transitive connections that span multiple gene interaction databases. Results are displayed in a comprehensible graphical format, showing gene interaction type and strength, database source and microarray expression data. These features make PathGen a valuable tool for in silico discovery of novel gene interaction pathways, which can be experimentally tested and verified. The usefulness of PathGen interaction analyses was validated using genes connected to the altered facial development related to Down syndrome. AVAILABILITY: http://dna.cs.byu.edu/pathgen. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Further information is available at http://dna.cs.byu.edu/pathgen/PathGenSupplemental.pdf.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks/genetics , Software , Databases, Genetic , Gene Expression , Gene Expression Profiling/methods , Genes , Oligonucleotide Array Sequence Analysis , Saccharomyces cerevisiae/genetics
18.
CRISPR J ; 4(1): 19-24, 2021 02.
Article in English | MEDLINE | ID: mdl-33571044

ABSTRACT

Gene drives hold promise for use in controlling insect vectors of diseases, agricultural pests, and for conservation of ecosystems against invasive species. At the same time, this technology comes with potential risks that include unknown downstream effects on entire ecosystems as well as the accidental or nefarious spread of organisms that carry the gene drive machinery. A code of ethics can be a useful tool for all parties involved in the development and regulation of gene drives and can be used to help ensure that a balanced analysis of risks, benefits, and values is taken into consideration in the interest of society and humanity. We have developed a code of ethics for gene drive research with the hope that this code will encourage the development of an international framework that includes ethical guidance of gene drive research and is incorporated into scientific practice by gaining broad agreement and adherence.


Subject(s)
Codes of Ethics , Gene Drive Technology , Ecosystem , Gene Editing , Humans , Introduced Species , Morals , Public Health
19.
Blood Cancer Discov ; 2(1): 54-69, 2021 01.
Article in English | MEDLINE | ID: mdl-33604581

ABSTRACT

Most human cancers converge to a deregulated methylome with reduced global levels and elevated methylation at select CpG islands. To investigate the emergence and dynamics of the cancer methylome, we characterized genome-wide DNA methylation in pre-neoplastic monoclonal B cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), including serial samples collected across disease course. We detected the aberrant tumor-associated methylation landscape at CLL diagnosis and found no significantly differentially methylated regions in the high-count MBL-to-CLL transition. Patient methylomes showed remarkable stability with natural disease and post-therapy progression. Single CLL cells were consistently aberrantly methylated, indicating a homogeneous transition to the altered epigenetic state, and a distinct expression profile together with MBL cells compared to normal B cells. Our longitudinal analysis reveals the cancer methylome to emerge early, which may provide a platform for subsequent genetically-driven growth dynamics and together with its persistent presence suggests a central role in the normal-to-cancer transition.


Subject(s)
Epigenome , Leukemia, Lymphocytic, Chronic, B-Cell , CpG Islands/genetics , DNA Methylation/genetics , Disease Progression , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
20.
Genome Biol ; 21(1): 266, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33081820

ABSTRACT

CRISPR-Cas9 gene editing has transformed our ability to rapidly interrogate the functional impact of somatic mutations in human cancers. Droplet-based technology enables the analysis of Cas9-introduced gene edits in thousands of single cells. Using this technology, we analyze Ba/F3 cells engineered to express single or multiplexed loss-of-function mutations recurrent in chronic lymphocytic leukemia. Our approach reliably quantifies mutational co-occurrences, zygosity status, and the occurrence of Cas9 edits at single-cell resolution.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Loss of Function Mutation , Single-Cell Analysis/methods , Animals , Female , High-Throughput Screening Assays , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL