Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 142(22): 1932-1934, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37704579

ABSTRACT

Splenic iron decreased whereas liver iron was stable during luspatercept therapy in some individuals with thalassemia. This suggests a reduction of ineffective erythropoiesis changes the organ distribution of iron and demonstrates that liver iron concentration alone may not accurately reflect total body iron content. This article describes data from subjects enrolled in BELIEVE (NCT02604433) and BEYOND (NCT03342404).


Subject(s)
Iron , beta-Thalassemia , Humans , Activin Receptors, Type II , beta-Thalassemia/drug therapy , Erythropoiesis , Liver
2.
Pediatr Res ; 95(5): 1335-1345, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38177250

ABSTRACT

BACKGROUND: In the Fontan palliation for single ventricle heart disease (SVHD), pulmonary blood flow is non-pulsatile/passive, low velocity, and low shear, making viscous power loss a critical determinant of cardiac output. The rheologic properties of blood in SVHD patients are essential for understanding and modulating their limited cardiac output and they have not been systematically studied. We hypothesize that viscosity is decreased in single ventricle circulation. METHODS: We evaluated whole blood viscosity, red blood cell (RBC) aggregation, and RBC deformability to evaluate changes in healthy children and SVHD patients. We altered suspending media to understand cellular and plasma differences contributing to rheologic differences. RESULTS: Whole blood viscosity was similar between SVHD and healthy at their native hematocrits, while viscosity was lower at equivalent hematocrits for SVHD patients. RBC deformability is increased, and RBC aggregation is decreased in SVHD patients. Suspending SVHD RBCs in healthy plasma resulted in increased RBC aggregation and suspending healthy RBCs in SVHD plasma resulted in lower RBC aggregation. CONCLUSIONS: Hematocrit corrected blood viscosity is lower in SVHD vs. healthy due to decreased RBC aggregation and higher RBC deformability, a viscous adaptation of blood in patients whose cardiac output is dependent on minimizing viscous power loss. IMPACT: Patients with single ventricle circulation have decreased red blood cell aggregation and increased red blood cell deformability, both of which result in a decrease in blood viscosity across a large shear rate range. Since the unique Fontan circulation has very low-shear and low velocity flow in the pulmonary arteries, blood viscosity plays an increased role in vascular resistance, therefore this work is the first to describe a novel mechanism to target pulmonary vascular resistance as a modifiable risk factor. This is a novel, modifiable risk factor in this patient population.


Subject(s)
Blood Viscosity , Erythrocyte Aggregation , Erythrocyte Deformability , Fontan Procedure , Humans , Child , Heart Defects, Congenital/surgery , Heart Defects, Congenital/physiopathology , Male , Female , Hematocrit , Univentricular Heart/surgery , Univentricular Heart/physiopathology , Child, Preschool , Heart Ventricles/physiopathology , Heart Ventricles/abnormalities , Cardiac Output , Adolescent , Erythrocytes
3.
Br J Haematol ; 201(5): 824-831, 2023 06.
Article in English | MEDLINE | ID: mdl-37037668

ABSTRACT

Patients with transfusion-dependent ß-thalassaemia require lifelong, regular red blood cell transfusions for survival; however, frequent blood transfusions are associated with an increased risk of iron overload, transfusion-transmitted disease and alloimmunization, as well as reduced quality of life. Luspatercept, an erythroid maturation agent that promotes late-stage erythroid maturation independently of erythropoietin, has demonstrated efficacy in reducing transfusion burden in patients with transfusion-dependent ß-thalassaemia. In this review, we discuss treatment initiation, ongoing evaluation, dose adjustment and management of adverse events in transfusion-dependent patients with ß-thalassaemia receiving luspatercept, and we provide guidance on how to determine whether patients are deriving clinical benefit.


Subject(s)
Immunoglobulin Fc Fragments , Immunologic Factors , beta-Thalassemia , Humans , beta-Thalassemia/drug therapy , beta-Thalassemia/complications , Immunoglobulin Fc Fragments/therapeutic use , Iron Overload/etiology , Iron Overload/chemically induced , Quality of Life , Immunologic Factors/therapeutic use
4.
Pediatr Blood Cancer ; 70(1): e29961, 2023 01.
Article in English | MEDLINE | ID: mdl-36094289

ABSTRACT

Sickle cell disease (SCD) requires coordinated, specialized medical care for optimal outcomes. There are no United States (US) guidelines that define a pediatric comprehensive SCD program. We report a modified Delphi consensus-seeking process to determine essential, optimal, and suggested elements of a comprehensive pediatric SCD center. Nineteen pediatric SCD specialists participated from the US. Consensus was predefined as 2/3 agreement on each element's categorization. Twenty-six elements were considered essential (required for guideline-based SCD care), 10 were optimal (recommended but not required), and five were suggested. This work lays the foundation for a formal recognition process of pediatric comprehensive SCD centers.


Subject(s)
Anemia, Sickle Cell , Child , Humans , Consensus , Anemia, Sickle Cell/therapy
5.
Blood ; 136(10): 1191-1200, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32518948

ABSTRACT

Persons with sickle cell disease (SCD) exhibit subjective hypersensitivity to cold and heat perception in experimental settings, and triggers such as cold exposure are known to precipitate vaso-occlusive crises by still unclear mechanisms. Decreased microvascular blood flow (MBF) increases the likelihood of vaso-occlusion by increasing entrapment of sickled red blood cells in the microvasculature. Because those with SCD have dysautonomia, we anticipated that thermal exposure would induce autonomic hypersensitivity of their microvasculature with an increased propensity toward vasoconstriction. We exposed 17 patients with SCD and 16 control participants to a sequence of predetermined threshold temperatures for cold and heat detection and cold and heat pain via a thermode placed on the right hand. MBF was measured on the contralateral hand by photoplethysmography, and cardiac autonomic balance was assessed by determining heart rate variability. Thermal stimuli at both detection and pain thresholds caused a significant decrease in MBF in the contralateral hand within seconds of stimulus application, with patients with SCD showing significantly stronger vasoconstriction (P = .019). Furthermore, patients with SCD showed a greater progressive decrease in blood flow than did the controls, with poor recovery between episodes of thermal stimulation (P = .042). They had faster vasoconstriction than the controls (P = .033), especially with cold detection stimulus. Individuals with higher anxiety also experienced more rapid vasoconstriction (P = .007). Augmented vasoconstriction responses and progressive decreases in perfusion with repeated thermal stimulation in SCD are indicative of autonomic hypersensitivity in the microvasculature. These effects are likely to increase red cell entrapment in response to clinical triggers such as cold or stress, which have been associated with vaso-occlusive crises in SCD.


Subject(s)
Anemia, Sickle Cell/complications , Microvessels/physiopathology , Primary Dysautonomias/pathology , Temperature , Vascular Diseases/pathology , Vasoconstriction , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Primary Dysautonomias/etiology , Vascular Diseases/etiology
6.
J Magn Reson Imaging ; 55(5): 1419-1425, 2022 05.
Article in English | MEDLINE | ID: mdl-34555245

ABSTRACT

BACKGROUND: Liver iron concentration (LIC) measured by MRI has become the clinical reference standard for managing iron overload in chronically transfused patients. Transverse relaxivity (R2 or R2* ) measurements are converted to LIC units using empirically derived calibration curves. HYPOTHESIS: That flip angle (FA) error due to B1+ spatial heterogeneity causes significant LIC quantitation error. B1+ scale (b1 , [FAactual /FAspecified ]) variation is a major problem at 3 T which could reduce the accuracy of transverse relaxivity measurements. STUDY TYPE: Prospective. POPULATION: Forty-seven subjects with chronic transfusional iron overload undergoing clinically indicated LIC assessment. FIELD STRENGTH/SEQUENCE: 5 T/3 T dual-repetition time B1+ mapping sequence ASSESSMENT: We quantified the average/standard deviation b1 in the right and left lobes of the liver from B1+ maps acquired at 1.5 T and 3 T. The impact of b1 variation on spin echo LIC estimates was determined using a Monte Carlo model. STATISTICAL TESTS: Mean, median, and standard deviation in whole liver and right and left lobes; two-sided t-test between whole-liver b1 means. RESULTS: Average b1 within the liver was 99.3% ± 12.3% at 1.5 T versus 69.6% ± 14.6% at 3 T and was independent of iron burden (P < 0.05). Monte Carlo simulations demonstrated that b1 systematically increased R2 estimates at lower LIC (<~25 mg/g at 1.5 T, <~15 mg/g at 3 T) but flattened or even inverted the R2 -LIC relationship at higher LIC (≥~25 mg/g to 1.5 T, ≥~15 mg/g to 3 T); changes in the R2 -LIC relationship were symmetric with respect to over and under excitation and were similar at 1.5 T and 3 T (for the same R2 value). The R2* -LIC relationship was independent of b1 . CONCLUSION: Spin echo R2 measurement of LIC at 3 T is error-prone without correction for b1 errors. The impact of b1 error on current 1.5 T spin echo-based techniques for LIC quantification is large enough to introduce measurable intersubject variability but the in vivo effect size needs a dedicated validation study. TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Iron Overload , Iron , Humans , Iron Overload/diagnostic imaging , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Prospective Studies
7.
Br J Haematol ; 193(3): 633-636, 2021 05.
Article in English | MEDLINE | ID: mdl-33216350

ABSTRACT

Kidney iron deposition measured by R2* (magnetic resonance imaging) MRI is posited to result from tubular reabsorption of filtered haemoglobin due to intravascular haemolysis. In chronically transfused sickle cell disease (SCD), R2* is elevated and positively correlated with lactate dehydrogenase (LDH). To account for contributions to renal iron from systemic iron overload, we evaluated kidney R2*, urinary iron and haemolysis markers in 62 non-transfused SCD patients. On multivariate analysis, kidney R2* was associated with urinary iron and LDH (R2  = 0·55, P < 0·0001). Our study confirms that kidney R2* is associated with intravascular haemolysis and raises important questions regarding the role of iron in SCD nephropathy.


Subject(s)
Anemia, Sickle Cell , Hemolysis , Iron/urine , Kidney Diseases , Kidney , Magnetic Resonance Imaging , Adolescent , Adult , Aged , Anemia, Sickle Cell/diagnostic imaging , Anemia, Sickle Cell/urine , Biomarkers/urine , Child , Female , Humans , Kidney/diagnostic imaging , Kidney/metabolism , Kidney Diseases/diagnostic imaging , Kidney Diseases/urine , Male , Middle Aged
8.
Magn Reson Med ; 86(2): 1019-1028, 2021 08.
Article in English | MEDLINE | ID: mdl-33719133

ABSTRACT

PURPOSE: Cerebral T2 oximetry is a non-invasive imaging method to measure blood T2 and cerebral venous oxygenation. Measured T2 values are converted to oximetry estimates using carefully validated and potentially disease-specific calibrations. In sickle cell disease, red blood cells have abnormal cell shape and membrane properties that alter T2 oximetry calibration relationships in clinically meaningful ways. Previous in vitro works by two independent groups established potentially competing calibration models. METHODS: This study analyzed pooled datasets from these two studies to establish a unified and more robust sickle-specific calibration to serve as a reference standard in the field. RESULTS: Even though the combined calibration did not demonstrate statistical superiority compared to previous models, the calibration was unbiased compared to blood-gas co-oximetry and yielded limits of agreement of (-10.1%, 11.6%) in non-transfused subjects with sickle cell disease. In transfused patients, this study proposed a simple correction method based on individual hemoglobin S percentage that demonstrated reduced bias in saturation measurement compared to previous uncorrected sickle calibrations. CONCLUSION: The combined calibration is based on a larger range of hematocrit, providing greater confidence in the hematocrit-dependent model parameters, and yielded unbiased estimates to blood-gas co-oximetry measurements from both sites. Additionally, this work also demonstrated the need to correct for transfusion in T2 oximetry measurements for hyper-transfused sickle cell disease patients and proposes a correction method based on patient-specific hemoglobin S concentration.


Subject(s)
Anemia, Sickle Cell , Oxygen , Anemia, Sickle Cell/diagnostic imaging , Calibration , Humans , Magnetic Resonance Imaging , Oximetry
10.
Am J Hematol ; 96(8): 901-913, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33891719

ABSTRACT

Anemia is the most common blood disorder in the world. In patients with chronic anemia, such as sickle cell disease or major thalassemia, cerebral blood flow increases to compensate for decreased oxygen content. However, the effects of chronic anemia on oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) are less well understood. In this study, we examined 47 sickle-cell anemia subjects (age 21.7 ± 7.1, female 45%), 27 non-sickle anemic subjects (age 25.0 ± 10.4, female 52%) and 44 healthy controls (age 26.4 ± 10.6, female 71%) using MRI metrics of brain oxygenation and flow. Phase contrast MRI was used to measure resting cerebral blood flow, while T2 -relaxation-under-spin-tagging (TRUST) MRI with disease appropriate calibrations were used to measure OEF and CMRO2 . We observed that patients with sickle cell disease and other chronic anemias have decreased OEF and CMRO2 (respectively 27.4 ± 4.1% and 3.39 ± 0.71 ml O2 /100 g/min in sickle cell disease, 30.8 ± 5.2% and 3.53 ± 0.64 ml O2 /100 g/min in other anemias) compared to controls (36.7 ± 6.0% and 4.00 ± 0.65 ml O2 /100 g/min). Impaired CMRO2 was proportional to the degree of anemia severity. We further demonstrate striking concordance of the present work with pooled historical data from patients having broad etiologies for their anemia. The reduced cerebral oxygen extraction and metabolism are consistent with emerging data demonstrating increased non-nutritive flow, or physiological shunting, in sickle cell disease patients.


Subject(s)
Anemia, Sickle Cell/complications , Cerebrovascular Circulation/physiology , Oxygen/blood , Adult , Anemia, Sickle Cell/pathology , Female , Humans , Male , Young Adult
11.
Am J Hematol ; 96(1): 60-68, 2021 01.
Article in English | MEDLINE | ID: mdl-33027545

ABSTRACT

The basic model of SCD physiology states that vaso-occlusion occurs when hemoglobin S-containing red blood cells (RBC) undergo sickling before they escape the capillary into a larger vessel. We have shown that mental stress, pain and cold, and events reported by patients to trigger SCD vaso-occlusive crisis (VOC), cause rapid and significant decrease in blood flow, reducing the likelihood that RBC could transit the microvasculature before sickling occurs. However, the critical link between decrease in microvascular blood flow and the incidence of future sickle VOC has never been established experimentally in humans. Using data from centrally adjudicated, overnight polysomnograms (PSG), previously collected in a prospective multi-center cohort sleep study, we analyzed the beat-to-beat amplitudes of vasoconstriction reported by the fingertip photoplethysmogram in 212 children and adolescents with SCD and developed an algorithm that detects vasoconstriction events and quantifies the magnitude (Mvasoc ), duration, and frequency of vasoconstriction that reflect the individual's inherent peripheral vasoreactivity. The propensity to vasoconstrict, quantified by median Mvasoc , predicted the incidence rate of post-PSG severe acute vaso-occlusive pain events (P = .006) after accounting for age and hemoglobin. Indices of sleep-disordered breathing contributed to median Mvasoc but did not predict future pain rate. Median Mvasoc was not associated with vaso-occlusive pain events that occurred prior to each PSG. These results show that SCD individuals with high inherent propensity to vasoconstrict have more frequent severe acute pain events. Our empirical findings are consistent with the fundamental SCD hypothesis that decreased microvascular flow promotes microvascular occlusion.


Subject(s)
Acute Pain , Anemia, Sickle Cell , Vascular Diseases , Vasoconstriction , Acute Pain/epidemiology , Acute Pain/etiology , Acute Pain/physiopathology , Adolescent , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/epidemiology , Anemia, Sickle Cell/physiopathology , Child , Female , Humans , Incidence , Male , Prospective Studies , Vascular Diseases/epidemiology , Vascular Diseases/etiology , Vascular Diseases/physiopathology
12.
Am J Hematol ; 96(3): 277-281, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33247606

ABSTRACT

Alpha thalassemia is a hemoglobinopathy due to decreased production of the α-globin protein from loss of up to four α-globin genes, with one or two missing in the trait phenotype. Individuals with sickle cell disease who co-inherit the loss of one or two α-globin genes have been known to have reduced risk of morbid outcomes, but the underlying mechanism is unknown. While α-globin gene deletions affect sickle red cell deformability, the α-globin genes and protein are also present in the endothelial wall of human arterioles and participate in nitric oxide scavenging during vasoconstriction. Decreased production of α-globin due to α-thalassemia trait may thereby limit nitric oxide scavenging and promote vasodilation. To evaluate this potential mechanism, we performed flow-mediated dilation and microvascular post-occlusive reactive hyperemia in 27 human subjects (15 missing one or two α-globin genes and 12 healthy controls). Flow-mediated dilation was significantly higher in subjects with α-trait after controlling for age (P = .0357), but microvascular perfusion was not different between groups. As none of the subjects had anemia or hemolysis, the improvement in vascular function could be attributed to the difference in α-globin gene status. This may explain the beneficial effect of α-globin gene loss in sickle cell disease and suggests that α-globin gene status may play a role in other vascular diseases.


Subject(s)
Hyperemia/genetics , Microcirculation/physiology , Nitric Oxide/physiology , Vasodilation/physiology , alpha-Globins/deficiency , alpha-Thalassemia/physiopathology , Adolescent , Adult , Anthropometry , Blood Pressure , Brachial Artery/pathology , Brachial Artery/physiopathology , Ethnicity/genetics , Female , Genotype , Hemorheology , Humans , Hyperemia/physiopathology , Laser-Doppler Flowmetry , Male , Middle Aged , Young Adult , alpha-Globins/genetics , alpha-Thalassemia/genetics
13.
Am J Hematol ; 96(1): 31-39, 2021 01.
Article in English | MEDLINE | ID: mdl-32944977

ABSTRACT

Sickle cell disease (SCD) is a monogenic hemoglobinopathy associated with significant morbidity and mortality. Cardiopulmonary, vascular and sudden death are the reasons for the majority of young adult mortality in SCD. To better understand the clinical importance of multi-level vascular dysfunction, in 2009 we assessed cardiac function including tricuspid regurgitant jet velocity (TRV), tissue velocity in systole(S') and diastole (E'), inflammatory, rheologic and hemolytic biomarkers as predictors of mortality in patients with SCD. With up to 9 years of follow up, we determined survival in 95 children, adolescents and adults with SCD. Thirty-eight patients (40%) were less than 21 years old at initial evaluation. Survival and Cox proportional-hazards analysis were performed. There was 19% mortality in our cohort, with median age at death of 35 years. In the pediatric subset, there was 11% mortality during the follow up period. The causes of death included cardiovascular and pulmonary complications in addition to other end-organ failure. On Cox proportional-hazards analysis, our model predicts that a 0.1 m/s increase in TRV increases risk of mortality 3%, 1 cm/s increase in S' results in a 91% increase, and 1 cm/s decrease in E' results in a 43% increase in mortality. While excluding cardiac parameters, higher plasma free hemoglobin was significantly associated with risk of mortality (p=.049). In conclusion, elevated TRV and altered markers of cardiac systolic and diastolic function predict mortality in a cohort of adolescents and young adult patients with SCD. These predictors should be considered when counseling cardiovascular risk and therapeutic optimization at transition to adult providers.


Subject(s)
Anemia, Sickle Cell , Echocardiography, Doppler , Tricuspid Valve Insufficiency , Adolescent , Adult , Age Factors , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/diagnostic imaging , Anemia, Sickle Cell/mortality , Anemia, Sickle Cell/physiopathology , Blood Flow Velocity , Disease-Free Survival , Female , Follow-Up Studies , Humans , Male , Middle Aged , Myocardium , Risk Factors , Survival Rate , Tricuspid Valve Insufficiency/diagnostic imaging , Tricuspid Valve Insufficiency/etiology , Tricuspid Valve Insufficiency/mortality , Tricuspid Valve Insufficiency/physiopathology
14.
Haematologica ; 105(1): 83-90, 2020 01.
Article in English | MEDLINE | ID: mdl-30975906

ABSTRACT

Vaso-occlusive crisis (VOC) is a hallmark of sickle cell disease (SCD) and occurs when deoxygenated sickled red blood cells occlude the microvasculature. Any stimulus, such as mental stress, which decreases microvascular blood flow will increase the likelihood of red cell entrapment resulting in local vaso-occlusion and progression to VOC. Neurally mediated vasoconstriction might be the physiological link between crisis triggers and vaso-occlusion. In this study, we determined the effect of mental stress on microvascular blood flow and autonomic nervous system reactivity. Sickle cell patients and controls performed mentally stressful tasks, including a memory task, conflict test and pain anticipation test. Blood flow was measured using photoplethysmography, autonomic reactivity was derived from electrocardiography and perceived stress was measured by the State-Trait Anxiety Inventory questionnaire. Stress tasks induced a significant decrease in microvascular blood flow, parasympathetic withdrawal and sympathetic activation in all subjects. Of the various tests, pain anticipation caused the highest degree of vasoconstriction. The magnitude of vasoconstriction, sympathetic activation and perceived stress was greater during the Stroop conflict test than during the N-back memory test, indicating the relationship between magnitude of experimental stress and degree of regional vasoconstriction. Baseline anxiety had a significant effect on the vasoconstrictive response in sickle cell subjects but not in controls. In conclusion, mental stress caused vasoconstriction and autonomic nervous system reactivity in all subjects. Although the pattern of responses was not significantly different between the two groups, the consequences of vasoconstriction can be quite significant in SCD because of the resultant entrapment of sickle cells in the microvasculature. This suggests that mental stress can precipitate a VOC in SCD by causing neural-mediated vasoconstriction.


Subject(s)
Anemia, Sickle Cell , Vascular Diseases , Anemia, Sickle Cell/complications , Autonomic Nervous System , Humans , Stress, Psychological , Vasoconstriction
15.
J Magn Reson Imaging ; 52(5): 1400-1412, 2020 11.
Article in English | MEDLINE | ID: mdl-32648323

ABSTRACT

BACKGROUND: Obstructive sleep apnea and nocturnal oxygen desaturations, which are prevalent in sickle cell disease (SCD) and chronic anemia disorders, have been linked to risks of stroke and silent cerebral infarcts (SCI). Cerebrovascular response to intermittent desaturations has not been well studied and may identify patients at greatest risk. PURPOSE: To investigate the cerebral dynamic response to induced desaturation in SCD patients with and without SCI, chronic anemia, and healthy subjects. STUDY TYPE: Prospective. SUBJECTS: Twenty-six SCD patients (age = 21 ± 8.2, female 46.2%), including 15 subjects without SCI and nine subjects with SCI, 15 nonsickle anemic patients (age = 22 ± 5.8, female 66.7%), and 31 controls (age = 28 ± 12.3, female 77.4%). FIELD STRENGTH/SEQUENCE: 3T, gradient-echo echo-planar imaging. ASSESSMENT: A transient hypoxia challenge of five breaths of 100% nitrogen gas was performed with blood oxygen level-dependent (BOLD) MRI and near-infrared spectroscopy (NIRS) acquisitions. Hypoxia responses were characterized by desaturation depth, time-to-peak, return-to-baseline half-life, and posthypoxia recovery in the BOLD and NIRS time courses. SCI were documented by T2 fluid-attenuation inversion recovery (FLAIR). STATISTICAL TESTS: Univariate and multivariate regressions were performed between hypoxic parameters and anemia predictors. Voxelwise two-sample t-statistic maps were used to assess the regional difference in hypoxic responses between anemic and control groups. RESULTS: Compared to controls, SCD and chronically anemic patients demonstrated significantly higher desaturation depth (P < 0.01) and shorter return-to-baseline timing response (P < 0.01). Patients having SCI had shorter time-to-peak (P < 0.01), return-to-baseline (P < 0.01), and larger desaturation depth (P < 0.01) in both white matter regions at risk and normal-appearing white matter than patients without infarcts. On multivariate analysis, desaturation depth and timing varied with age, sex, blood flow, white blood cells, and cell-free hemoglobin (r2 = 0.25 for desaturation depth; r2 = 0.18 for time-to-peak; r2 = 0.37 for return-to-baseline). DATA CONCLUSION: Transient hypoxia revealed global and regional response differences between anemic and healthy subjects. SCI was associated with extensive heterogeneity of desaturation dynamics, consistent with extensive underlying microvascular remodeling.


Subject(s)
Anemia, Sickle Cell , Spectroscopy, Near-Infrared , Adolescent , Adult , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/diagnostic imaging , Cerebrovascular Circulation , Child , Female , Humans , Hypoxia/diagnostic imaging , Magnetic Resonance Imaging , Oxygen , Prospective Studies , Young Adult
17.
Haematologica ; 104(10): 1974-1983, 2019 10.
Article in English | MEDLINE | ID: mdl-30948484

ABSTRACT

Quality of response to immunosuppressive therapy and long-term outcomes for pediatric severe aplastic anemia remain incompletely characterized. Contemporary evidence to inform treatment of relapsed or refractory severe aplastic anemia for pediatric patients is also limited. The clinical features and outcomes for 314 children treated from 2002 to 2014 with immunosuppressive therapy for acquired severe aplastic anemia were analyzed retrospectively from 25 institutions in the North American Pediatric Aplastic Anemia Consortium. The majority of subjects (n=264) received horse anti-thymocyte globulin (hATG) plus cyclosporine (CyA) with a median 61 months follow up. Following hATG/CyA, 71.2% (95%CI: 65.3,76.6) achieved an objective response. In contrast to adult studies, the quality of response achieved in pediatric patients was high, with 59.8% (95%CI: 53.7,65.8) complete response and 68.2% (95%CI: 62.2,73.8) achieving at least a very good partial response with a platelet count ≥50×109L. At five years post-hATG/CyA, overall survival was 93% (95%CI: 89,96), but event-free survival without subsequent treatment was only 64% (95%CI: 57,69) without a plateau. Twelve of 171 evaluable patients (7%) acquired clonal abnormalities after diagnosis after a median 25.2 months (range: 4.3-71 months) post treatment. Myelodysplastic syndrome or leukemia developed in 6 of 314 (1.9%). For relapsed/refractory disease, treatment with a hematopoietic stem cell transplant had a superior event-free survival compared to second immunosuppressive therapy treatment in a multivariate analysis (HR=0.19, 95%CI: 0.08,0.47; P=0.0003). This study highlights the need for improved therapies to achieve sustained high-quality remission for children with severe aplastic anemia.


Subject(s)
Anemia, Aplastic/drug therapy , Antilymphocyte Serum/administration & dosage , Cyclosporine/administration & dosage , Immunosuppression Therapy , Anemia, Aplastic/epidemiology , Anemia, Aplastic/pathology , Antilymphocyte Serum/adverse effects , Child, Preschool , Cyclosporine/adverse effects , Female , Follow-Up Studies , Humans , Infant , Male , Retrospective Studies , United States/epidemiology
19.
Am J Hematol ; 94(6): 678-688, 2019 06.
Article in English | MEDLINE | ID: mdl-30916797

ABSTRACT

We have previously demonstrated that sickle cell disease (SCD) patients maintain normal global systemic and cerebral oxygen delivery by increasing cardiac output. However, ischemic end-organ injury remains common suggesting that tissue oxygen delivery may be impaired by microvascular dysregulation or damage. To test this hypothesis, we performed fingertip laser Doppler flowmetry measurements at the base of the nailbed and regional oxygen saturation (rSO2 ) on the dorsal surface of the same hand. This was done during flow mediated dilation (FMD) studies in 26 chronically transfused SCD, 75 non-transfused SCD, and 18 control subjects. Chronically transfused SCD patients were studied prior to and following a single transfusion and there was no acute change in rSO2 or perfusion. Laser Doppler estimates of resting perfusion were 76% higher in non-transfused and 110% higher in transfused SCD patients, compared to control subjects. In contrast, rSO2 was 12 saturation points lower in non-transfused SCD patients, but normal in the transfused SCD patients. During cuff occlusion, rSO2 declined at the same rate in all subjects suggesting similar intrinsic oxygen consumption rates. Upon cuff release, laser doppler post occlusive hyperemia was blunted in SCD patients in proportion to their resting perfusion values. Transfusion therapy did not improve the hyperemia response. FMD was impaired in SCD subjects but partially ameliorated in transfused SCD subjects. Taken together, non-transfused SCD subjects demonstrate impaired conduit artery FMD, impaired microcirculatory post-occlusive hyperemia, and resting hypoxia in the hand despite compensated oxygen delivery, suggesting impaired oxygen supply-demand matching. Transfusion improves FMD and oxygen supply-demand matching but not microcirculation hyperemic response.


Subject(s)
Anemia, Sickle Cell , Blood Transfusion , Laser-Doppler Flowmetry , Microcirculation , Oxygen Consumption , Oxygen/blood , Adolescent , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/physiopathology , Anemia, Sickle Cell/therapy , Blood Flow Velocity , Female , Humans , Male
20.
Am J Hematol ; 94(4): 467-474, 2019 04.
Article in English | MEDLINE | ID: mdl-30697803

ABSTRACT

Although modern medical management has lowered overt stroke occurrence in patients with sickle cell disease (SCD), progressive white matter (WM) damage remains common. It is known that cerebral blood flow (CBF) increases to compensate for anemia, but sufficiency of cerebral oxygen delivery, especially in the WM, has not been systematically investigated. Cerebral perfusion was measured by arterial spin labeling in 32 SCD patients (age range: 10-42 years old, 14 males, 7 with HbSC, 25 HbSS) and 25 age and race-matched healthy controls (age range: 15-45 years old, 10 males, 12 with HbAS, 13 HbAA); 8/24 SCD patients were receiving regular blood transfusions and 14/24 non-transfused SCD patients were taking hydroxyurea. Imaging data from control subjects were used to calculate maps for CBF and oxygen delivery in SCD patients and their T-score maps. Whole brain CBF was increased in SCD patients with a mean T-score of 0.5 and correlated with lactate dehydrogenase (r2 = 0.58, P < 0.0001). When corrected for oxygen content and arterial saturation, whole brain and gray matter (GM) oxygen delivery were normal in SCD, but WM oxygen delivery was 35% lower than in controls. Age and hematocrit were the strongest predictors for WM CBF and oxygen delivery in patients with SCD. There was spatial co-localization between regions of low oxygen delivery and WM hyperintensities on T2 FLAIR imaging. To conclude, oxygen delivery is preserved in the GM of SCD patients, but is decreased throughout the WM, particularly in areas prone to WM silent strokes.


Subject(s)
Anemia, Sickle Cell , Cerebrovascular Circulation , Magnetic Resonance Angiography , Oxygen/metabolism , White Matter , Adolescent , Adult , Anemia, Sickle Cell/diagnostic imaging , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/physiopathology , Female , Hematocrit , Humans , Male , Middle Aged , White Matter/blood supply , White Matter/diagnostic imaging , White Matter/metabolism , White Matter/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL