Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Neuroendocrinology ; 110(3-4): 258-270, 2020.
Article in English | MEDLINE | ID: mdl-31154452

ABSTRACT

BACKGROUND: Melanin-concentrating hormone (MCH)-expressing neurons have been implicated in regulation of energy homeostasis and reward, yet the role of their electrical activity in short-term appetite and reward modulation has not been fully understood. OBJECTIVES: We investigated short-term behavioral and physiological effects of MCH neuron activity manipulations. METHODS: We used optogenetic and chemogenetic approaches in Pmch-cre transgenic mice to acutely stimulate/inhibit MCH neuronal activity while probing feeding, locomotor activity, anxiety-like behaviors, glucose homeostasis, and reward. RESULTS: MCH neuron activity is neither required nor sufficient for short-term appetite unless stimulation is temporally paired with consumption. MCH neuronal activation does not affect short-term locomotor activity, but inhibition improves glucose tolerance and is mildly anxiolytic. Finally, using two different operant tasks, we showed that activation of MCH neurons alone is sufficient to induce reward. CONCLUSIONS: Our results confirm diverse behavioral/physiological functions of MCH neurons and suggest a direct role in reward function.


Subject(s)
Appetite/physiology , Behavior, Animal/physiology , Blood Glucose/metabolism , Feeding Behavior/physiology , Hypothalamic Hormones/metabolism , Locomotion/physiology , Melanins/metabolism , Neurons/physiology , Pituitary Hormones/metabolism , Reward , Animals , Female , Homeostasis/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Optogenetics
2.
Nat Commun ; 14(1): 8122, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065932

ABSTRACT

Oligodendrocyte precursor cells (OPCs) generate oligodendrocytes, contributing to myelination and myelin repair. OPCs contact axons and respond to neuronal activity, but how the information relayed by the neuronal activity translates into OPC Ca2+ signals, which in turn influence their fate, remains unknown. We generated transgenic mice for concomitant monitoring of OPCs Ca2+ signals and cell fate using 2-photon microscopy in the somatosensory cortex of awake-behaving mice. Ca2+ signals in OPCs mainly occur within processes and confine to Ca2+ microdomains. A subpopulation of OPCs enhances Ca2+ transients while mice engaged in exploratory locomotion. We found that OPCs responsive to locomotion preferentially differentiate into oligodendrocytes, and locomotion-non-responsive OPCs divide. Norepinephrine mediates locomotion-evoked Ca2+ increases in OPCs by activating α1 adrenergic receptors, and chemogenetic activation of OPCs or noradrenergic neurons promotes OPC differentiation. Hence, we uncovered that for fate decisions OPCs integrate Ca2+ signals, and norepinephrine is a potent regulator of OPC fate.


Subject(s)
Calcium , Oligodendrocyte Precursor Cells , Mice , Animals , Oligodendrocyte Precursor Cells/physiology , Norepinephrine/pharmacology , Mice, Transgenic , Myelin Sheath/physiology , Oligodendroglia/physiology , Cell Differentiation/physiology , Cerebral Cortex
3.
Nat Commun ; 14(1): 6602, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857606

ABSTRACT

Norepinephrine (NE) is a well-known appetite regulator, and the nor/adrenergic system is targeted by several anti-obesity drugs. To better understand the circuitry underlying adrenergic appetite control, here we investigated the paraventricular hypothalamic nucleus (PVN), a key brain region that integrates energy signals and receives dense nor/adrenergic input, using a mouse model. We found that PVN NE level increases with signals of energy deficit and decreases with food access. This pattern is recapitulated by the innervating catecholaminergic axon terminals originating from NTSTH-neurons. Optogenetic activation of rostral-NTSTH → PVN projection elicited strong motivation to eat comparable to overnight fasting whereas its inhibition attenuated both fasting-induced & hypoglycemic feeding. We found that NTSTH-axons functionally targeted PVNMC4R-neurons by predominantly inhibiting them, in part, through α1-AR mediated potentiation of GABA release from ARCAgRP presynaptic terminals. Furthermore, glucoprivation suppressed PVNMC4R activity, which was required for hypoglycemic feeding response. These results define an ascending nor/adrenergic circuit, NTSTH → PVNMC4R, that conveys peripheral hunger signals to melanocortin pathway.


Subject(s)
Hunger , Melanocortins , Melanocortins/metabolism , Adrenergic Agents/metabolism , Appetite , Paraventricular Hypothalamic Nucleus/metabolism , Norepinephrine/metabolism , Hypoglycemic Agents/metabolism
4.
Cell Metab ; 31(2): 313-326.e5, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31839488

ABSTRACT

Glucose is the essential energy source for the brain, whose deficit, triggered by energy deprivation or therapeutic agents, can be fatal. Increased appetite is the key behavioral defense against hypoglycemia; however, the central pathways involved are not well understood. Here, we describe a glucoprivic feeding pathway by tyrosine hydroxylase (TH)-expressing neurons from nucleus of solitary tract (NTS), which project densely to the hypothalamus and elicit feeding through bidirectional adrenergic modulation of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons. Acute chemogenetic inhibition of arcuate nucleus (ARC)-projecting NTSTH neurons or their target, AgRP neurons, impaired glucoprivic feeding induced by 2-Deoxy-D-glucose (2DG) injection. Neuroanatomical tracing results suggested that ARC-projecting orexigenic NTSTH neurons are largely distinct from neighboring catecholamine neurons projecting to parabrachial nucleus (PBN) that promotes satiety. Collectively, we describe a circuit organization in which an ascending pathway from brainstem stimulates appetite through key hunger neurons in the hypothalamus in response to hypoglycemia.


Subject(s)
Agouti-Related Protein/metabolism , Appetite Regulation , Hypoglycemia/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Solitary Nucleus/metabolism , Animals , Female , Hypothalamus/cytology , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Solitary Nucleus/cytology
5.
ACS Appl Mater Interfaces ; 8(19): 11934-44, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27149109

ABSTRACT

Phenylboronic acid-functionalized, Ag shell-coated, magnetic, monodisperse polymethacrylate microspheres equipped with a glycoprotein-sensitive sandwich system were proposed as a surface-enhanced Raman scattering (SERS) substrate for quantitative determination of glycated hemoglobin (HbA1c). The magnetization of the SERS tag and the formation of the Ag shell on the magnetic support were achieved using the bifunctional reactivity of newly synthesized polymethacrylate microspheres. The hemolysate of human red blood cells containing both HbA1c and nonglycated hemoglobin was used for determination of HbA1c. The working principle of the proposed SERS tag is based on the immobilization of HbA1c by cyclic boronate ester formation between glycosyl residues of HbA1c and boronic acid groups of magnetic polymethacrylate microspheres and the binding of p-aminothiophenol (PATP)-functionalized Ag nanoparticles (Ag NPs) carrying another boronic acid ligand via cyclic boronate ester formation via unused glycosyl groups of bound HbA1c. Then, in situ formation of a Raman reporter, 4,4'-dimercaptoazobenzene from PATP under 785 nm laser irradiation allowed for the quantification of HbA1c bound onto the magnetic SERS tag, which was proportional to the HbA1c concentration in the hemolysate of human erythrocytes. The sandwich system provided a significant enhancement in the SERS signal intensity due to the plasmon coupling between Ag NPs and Ag shell-coated magnetic microspheres, and low HbA1c concentrations down to 50 ng/mL could be detected. The calibration curve obtained with a high correlation coefficient between the SERS signal intensity and HbA1c level showed the usability of the SERS protocol for the determination of the HbA1c level in any person.


Subject(s)
Boronic Acids/chemistry , Erythrocytes/chemistry , Glycated Hemoglobin/analysis , Hemolysis , Spectrum Analysis, Raman , Humans
SELECTION OF CITATIONS
SEARCH DETAIL