Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Commun Signal ; 20(1): 5, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34998390

ABSTRACT

BACKGROUND: G protein-coupled receptors (GPCRs) usually regulate cellular processes via activation of intracellular signaling pathways. However, we have previously shown that in several cell lines, GqPCRs induce immediate inactivation of the AKT pathway, which leads to JNK-dependent apoptosis. This apoptosis-inducing AKT inactivation is essential for physiological functions of several GqPCRs, including those for PGF2α and GnRH. METHODS: Here we used kinase activity assays of PI3K and followed phosphorylation state of proteins using specific antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein-protein interactions. Apoptosis was detected by TUNEL assay and PARP1 cleavage. RESULTS: We identified the mechanism that allows the unique stimulated inactivation of AKT and show that the main regulator of this process is the phosphatase PP2A, operating with the non-canonical regulatory subunit IGBP1. In resting cells, an IGBP1-PP2Ac dimer binds to PI3K, dephosphorylates the inhibitory pSer608-p85 of PI3K and thus maintains its high basal activity. Upon GqPCR activation, the PP2Ac-IGBP1 dimer detaches from PI3K and thus allows the inhibitory dephosphorylation. At this stage, the free PP2Ac together with IGBP1 and PP2Aa binds to AKT, causing its dephosphorylation and inactivation. CONCLUSION: Our results show a stimulated shift of PP2Ac from PI3K to AKT termed "PP2A switch" that represses the PI3K/AKT pathway, providing a unique mechanism of GPCR-stimulated dephosphorylation. Video Abstract.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
2.
Sci Rep ; 7: 43078, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28225038

ABSTRACT

Crosstalk between the ERK cascade and other signaling pathways is one of the means by which it acquires its signaling specificity. Here we identified a direct interaction of both MEK1 and MEK2 with AKT. The interaction is mediated by the proline rich domain of MEK1/2 and regulated by phosphorylation of Ser298 in MEK1, or Ser306 in MEK2, which we identified here as a novel regulatory site. We further developed a blocking peptide, which inhibits the interaction between MEK and AKT, and when applied to cells, affects migration and adhesion, but not proliferation. The specific mechanism of action of the MEK-AKT complex involves phosphorylation of the migration-related transcription factor FoxO1. Importantly, prevention of the interaction results in a decreased metastasis formation in a breast cancer mouse model. Thus, the identified interaction both sheds light on how signaling specificity is determined, and represents a possible new therapeutic target for metastatic cancer.


Subject(s)
Cell Movement , Forkhead Box Protein O1/metabolism , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Animals , COS Cells , Chlorocebus aethiops , HeLa Cells , Humans , Neoplasm Metastasis , Phosphorylation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL