ABSTRACT
The folding reaction of a stable monomeric variant of Cu/Zn superoxide dismutase (mSOD1), an enzyme responsible for the conversion of superoxide free radicals into hydrogen peroxide and oxygen, is known to be among the slowest folding processes that adhere to two-state behavior. The long lifetime, â¼10 s, of the unfolded state presents ample opportunities for the polypeptide chain to transiently sample nonnative structures before the formation of the productive folding transition state. We recently observed the formation of a nonnative structure in a peptide model of the C-terminus of SOD1, a sequence that might serve as a potential source of internal chain friction-limited folding. To test for friction-limited folding, we performed a comprehensive thermodynamic and kinetic analysis of the folding mechanism of mSOD1 in the presence of the viscogens glycerol and glucose. Using a, to our knowledge, novel analysis of the folding reactions, we found the disulfide-reduced form of the protein that exposes the C-terminal sequence, but not its disulfide-oxidized counterpart that protects it, experiences internal chain friction during folding. The sensitivity of the internal friction to the disulfide bond status suggests that one or both of the cross-linked regions play a critical role in driving the friction-limited folding. We speculate that the molecular mechanisms giving rise to the internal friction of disulfide-reduced mSOD1 might play a role in the amyotrophic lateral sclerosis-linked aggregation of SOD1.
Subject(s)
Amyotrophic Lateral Sclerosis , Disulfides , Friction , Humans , Kinetics , Mutation , Protein Folding , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolismABSTRACT
Dozens of mutations throughout the sequence of the gene encoding superoxide dismutase 1 (SOD1) have been linked to toxic protein aggregation in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). A parsimonious explanation for numerous genotypes resulting in a common phenotype would be mutation-induced perturbation of the folding free-energy surface that increases the populations of high-energy states prone to aggregation. The absence of intermediates in the folding of monomeric SOD1 suggests that the unfolded ensemble is a potential source of aggregation. To test this hypothesis, here we dissected SOD1 into a set of peptides end-labeled with FRET probes to model the local behavior of the corresponding sequences in the unfolded ensemble. Using time-resolved FRET, we observed that the peptide corresponding to the Loop VII-ß8 sequence at the SOD1 C terminus was uniquely sensitive to denaturant. Utilizing a two-dimensional form of maximum entropy modeling, we demonstrate that the sensitivity to denaturant is the surprising result of a two-state-like transition from a compact to an expanded state. Variations of the peptide sequence revealed that the compact state involves a nonnative interaction between the disordered N terminus and the hydrophobic C terminus of the peptide. This nonnative intramolecular structure could serve as a precursor for intermolecular association and result in aggregation associated with ALS. We propose that this precursor would provide a common molecular target for therapeutic intervention in the dozens of ALS-linked SOD1 mutations.
Subject(s)
Amyotrophic Lateral Sclerosis/enzymology , Superoxide Dismutase-1/ultrastructure , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/genetics , Disulfides/chemistry , Fluorescence Resonance Energy Transfer/methods , Humans , Models, Molecular , Mutation , Peptides/genetics , Protein Folding , Protein Multimerization , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolismABSTRACT
Anelloviruses are nonpathogenic viruses that comprise a major portion of the human virome. Despite being ubiquitous in the human population, anelloviruses (ANVs) remain poorly understood. Basic features of the virus, such as the identity of its capsid protein and the structure of the viral particle, have been unclear until now. Here, we use cryogenic electron microscopy to describe the first structure of an ANV-like particle. The particle, formed by 60 jelly roll domain-containing ANV capsid proteins, forms an icosahedral particle core from which spike domains extend to form a salient part of the particle surface. The spike domains come together around the 5-fold symmetry axis to form crown-like features. The base of the spike domain, the P1 subdomain, shares some sequence conservation between ANV strains while a hypervariable region, forming the P2 subdomain, is at the spike domain apex. We propose that this structure renders the particle less susceptible to antibody neutralization by hiding vulnerable conserved domains while exposing highly diverse epitopes as immunological decoys, thereby contributing to the immune evasion properties of anelloviruses. These results shed light on the structure of anelloviruses and provide a framework to understand their interactions with the immune system.
Subject(s)
Capsid Proteins , Cryoelectron Microscopy , Immune Evasion , Virion , Capsid Proteins/chemistry , Capsid Proteins/immunology , Capsid Proteins/ultrastructure , Virion/ultrastructure , Virion/immunology , Humans , Anelloviridae/genetics , Anelloviridae/immunology , Models, Molecular , Protein Domains , Epitopes/immunology , Epitopes/chemistry , Amino Acid SequenceABSTRACT
We sought to evaluate sex-specific 1) muscle activation patterns, hemodynamics, and swelling responses to short-cycle repetitive fatigue; 2) relationships between muscular responses and perceived fatigability. Asymptomatic participants (N = 26, 13 females) completed a repetitive pointing task until 8/10 on the Borg CR10 scale. Upper trapezius (UT), supraspinatus (SUPRA), and biceps brachii (BIC) muscle activation, activation variability (CV), median power frequency (MdPF) and thickness, and UT oxygenation were recorded. Males had higher BIC CV, UT and SUPRA MdPF, and UT and BIC thickness. Longer time to fatigue-terminal was correlated to greater SUPRA activation increase (ρ = 0.624) and BIC MdPF decrease (ρ = -0.674) in males, while in females it was correlated to greater (ρ = -0.657) and lower (ρ = 0.683) decrease of SUPRA and BIC CV, respectively. Male's greater increase in SUPRA thickness correlated to greater increase in UT thickness and tissue oxygenation index, and to lower increase of UT deoxyhemoglobin. Females' greater decrease of SUPRA MdPF correlated to greater decrease of UT MdPF, while greater UT activation increase was related to lower UT thickness increase. Results suggest that despite comparable time to fatigue-terminal, males have greater force-generating capacity and neuromuscular reliance on recruitment and excitation rates, while females have greater reliance on activation variability. Further, there are relationships between hemodynamic and swelling patterns in males, while there are relationships between activation and swelling patterns in females. Although there were no differences in experimental task-induced changes, there are sex-specific relationships between muscular patterns and perceived fatigability, which may help explain sex-specific mechanisms of musculoskeletal disorders.
Subject(s)
Muscle Fatigue , Superficial Back Muscles , Arm , Electromyography , Fatigue , Female , Humans , Male , Muscle, Skeletal , Young AdultABSTRACT
The rate-limiting step in the formation of the native dimeric state of human Cu, Zn superoxide dismutase (SOD1) is a very slow monomer folding reaction that governs the lifetime of its unfolded state. Mutations at dozens of sites in SOD1 are known to cause a fatal motor neuron disease, amyotrophic lateral sclerosis, and recent experiments implicate the unfolded state as a source of soluble oligomers and histologically observable aggregates thought to be responsible for toxicity. To determine the thermodynamic properties of the transition state ensemble (TSE) limiting the folding of this high-contact-order ß-sandwich motif, we performed a combined thermal/urea denaturation thermodynamic/kinetic analysis. The barriers to folding and unfolding are dominated by the activation enthalpy at 298 K and neutral pH; the activation entropy is favorable and reduces the barrier height for both reactions. The absence of secondary structure formation or large-scale chain collapse prior to crossing the barrier for folding led to the conclusion that dehydration of nonpolar surfaces in the TSE is responsible for the large and positive activation enthalpy. Although the activation entropy favors the folding reaction, the transition from the unfolded state to the native state is entropically disfavored at 298 K. The opposing entropic contributions to the free energies of the TSE and the native state during folding provide insights into structural properties of the TSE. The results also imply a crucial role for water in governing the productive folding reaction and enhancing the propensity for the aggregation of SOD1.