Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Plant Physiol ; 194(4): 2117-2135, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38060625

ABSTRACT

The gynoecium is critical for the reproduction of flowering plants as it contains the ovules and the tissues that foster pollen germination, growth, and guidance. These tissues, known as the reproductive tract (ReT), comprise the stigma, style, and transmitting tract (TT). The ReT and ovules originate from the carpel margin meristem (CMM) within the pistil. SHOOT MERISTEMLESS (STM) is a key transcription factor for meristem formation and maintenance. In all above-ground meristems, including the CMM, local STM downregulation is required for organ formation. However, how this downregulation is achieved in the CMM is unknown. Here, we have studied the role of HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis (Arabidopsis thaliana) during ovule and ReT differentiation based on the observation that the hda19-3 mutant displays a reduced ovule number and fails to differentiate the TT properly. Fluorescence-activated cell sorting coupled with RNA-sequencing revealed that in the CMM of hda19-3 mutants, genes promoting organ development are downregulated while meristematic markers, including STM, are upregulated. HDA19 was essential to downregulate STM in the CMM, thereby allowing ovule formation and TT differentiation. STM is ectopically expressed in hda19-3 at intermediate stages of pistil development, and its downregulation by RNA interference alleviated the hda19-3 phenotype. Chromatin immunoprecipitation assays indicated that STM is a direct target of HDA19 during pistil development and that the transcription factor SEEDSTICK is also required to regulate STM via histone acetylation. Thus, we identified factors required for the downregulation of STM in the CMM, which is necessary for organogenesis and tissue differentiation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Histones/genetics , Ovule/genetics , Ovule/metabolism , Arabidopsis/physiology , Transcription Factors/metabolism , Meristem , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , Histone Deacetylases/metabolism
2.
Plant J ; 114(2): 371-389, 2023 04.
Article in English | MEDLINE | ID: mdl-36775989

ABSTRACT

Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Hydroxyproline/metabolism , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Mucoproteins/genetics , Mucoproteins/metabolism , Flowers/genetics , Pollen/metabolism , Glycosides/metabolism
3.
BMC Plant Biol ; 24(1): 771, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39134964

ABSTRACT

BACKGROUND: In Angiosperms, the continuation of plant species is intricately dependent on the funiculus multifaceted role in nutrient transport, mechanical support, and dehiscence of seeds. SEEDSTICK (STK) is a MADS-box transcription factor involved in seed size and abscission, and one of the few genes identified as affecting funiculus growth. Given the importance of the funiculus to a correct seed development, allied with previous phenotypic observations of stk mutants, we performed a transcriptomic analysis of stk funiculi from floral stage 17, using RNA-sequencing, to infer on the deregulated networks of genes. RESULTS: The generated dataset of differentially expressed genes was enriched with cell wall biogenesis, cell cycle, sugar metabolism and transport terms, all in accordance with stk phenotype observed in funiculi from floral stage 17. We selected eight differentially expressed genes for transcriptome validation using qPCR and/or promoter reporter lines. Those genes were involved with abscission, seed development or novel functions in stk funiculus, such as hormones/secondary metabolites transport. CONCLUSION: Overall, the analysis performed in this study allowed delving into the STK-network established in Arabidopsis funiculus, fulfilling a literature gap. Simultaneously, our findings reinforced the reliability of the transcriptome, making it a valuable resource for candidate genes selection for functional genetic studies in the funiculus. This will enhance our understanding on the regulatory network controlled by STK, on the role of the funiculus and how seed development may be affected by them.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MADS Domain Proteins , Seeds , Transcriptome , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seeds/genetics , Seeds/growth & development , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Gene Expression Regulation, Plant , Gene Expression Profiling , Fertilization/genetics
4.
Ann Bot ; 131(5): 827-838, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36945741

ABSTRACT

BACKGROUND AND AIMS: Morphogenesis occurs through accurate interaction between essential players to generate highly specialized plant organs. Fruit structure and function are triggered by a neat transcriptional control involving distinct regulator genes encoding transcription factors (TFs) or signalling proteins, such as the C2H2/C2HC zinc-finger NO TRANSMITTING TRACT (NTT) or the MADS-box protein SEEDSTICK (STK), which are important in setting plant reproductive competence, feasibly by affecting cell wall polysaccharide and lipid distribution. Arabinogalactan proteins (AGPs) are major components of the cell wall and are thought to be involved in the reproductive process as important players in specific stages of development. The detection of AGPs epitopes in reproductive tissues of NTT and other fruit development-related TFs, such as MADS-box proteins including SHATTERPROOF1 (SHP1), SHP2 and STK, was the focus of this study. METHODS: We used fluorescence microscopy to perform immunolocalization analyses on stk and ntt single mutants, on the ntt stk double mutant and on the stk shp1 shp2 triple mutant using specific anti-AGP monoclonal antibodies. In these mutants, the expression levels of selected AGP genes were also measured by quantitative real-time PCR and compared with the respective expression in wild-type (WT) plants. KEY RESULTS: The present immunolocalization study collects information on the distribution patterns of specific AGPs in Arabidopsis female reproductive tissues, complemented by the quantification of AGP expression levels, comparing WT, stk and ntt single mutants, the ntt stk double mutant and the stk shp1 shp2 triple mutant. CONCLUSIONS: These findings reveal distinct AGP distribution patterns in different developmental mutants related to the female reproductive unit in Arabidopsis. The value of the immunofluorescence labelling technique is highlighted in this study as an invaluable tool to dissect the remodelling nature of the cell wall in developmental processes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Mucoproteins/metabolism , MADS Domain Proteins/genetics
5.
Int J Mol Sci ; 22(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807566

ABSTRACT

Angiosperm reproduction relies on the precise growth of the pollen tube through different pistil tissues carrying two sperm cells into the ovules' embryo sac, where they fuse with the egg and the central cell to accomplish double fertilization and ultimately initiate seed development. A network of intrinsic and tightly regulated communication and signaling cascades, which mediate continuous interactions between the pollen tube and the sporophytic and gametophytic female tissues, ensures the fast and meticulous growth of pollen tubes along the pistil, until it reaches the ovule embryo sac. Most of the pollen tube growth occurs in a specialized tissue-the transmitting tract-connecting the stigma, the style, and the ovary. This tissue is composed of highly secretory cells responsible for producing an extensive extracellular matrix. This multifaceted matrix is proposed to support and provide nutrition and adhesion for pollen tube growth and guidance. Insights pertaining to the mechanisms that underlie these processes remain sparse due to the difficulty of accessing and manipulating the female sporophytic tissues enclosed in the pistil. Here, we summarize the current knowledge on this key step of reproduction in flowering plants with special emphasis on the female transmitting tract tissue.


Subject(s)
Fertilization/physiology , Flowers/physiology , Ovule/physiology , Extracellular Matrix/physiology , Flowers/metabolism , Magnoliopsida/metabolism , Magnoliopsida/physiology , Ovule/metabolism , Plant Proteins/metabolism , Pollen Tube/metabolism , Pollen Tube/physiology , Seeds/metabolism , Signal Transduction/physiology
6.
Mol Biol Rep ; 47(3): 2315-2325, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31950325

ABSTRACT

Arabinogalactan Proteins (AGPs) are hydroxyproline-rich proteins containing a high proportion of carbohydrates, widely spread in the plant kingdom. AGPs have been suggested to play important roles in plant development processes, especially in sexual plant reproduction. Nevertheless, the functions of a large number of these molecules, remains to be discovered. In this review, we discuss two revolutionary genetic techniques that are able to decode the roles of these glycoproteins in an easy and efficient way. The RNA interference is a frequently technique used in plant biology that promotes genes silencing. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (CRISPR/Cas9), emerged a few years ago as a revolutionary genome-editing technique that has allowed null mutants to be obtained in a wide variety of organisms, including plants. The two techniques have some differences between them and depending on the research objective, these may work as advantage or disadvantage. In the present work, we propose the use of the two techniques to obtain AGP mutants easily and quickly, helping to unravel the role of AGPs, surely a great asset for the future.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Expression Regulation , Mucoproteins/genetics , RNA Interference , Animals , Gene Silencing , Gene Targeting , Humans , Mucoproteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Small Interfering/genetics , Research
7.
J Exp Bot ; 70(11): 2979-2992, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30820535

ABSTRACT

The process of plant fertilization provides an outstanding example of refined control of gene expression. During this elegant process, subtle communication occurs between neighboring cells, based on chemical signals, that induces cellular mechanisms of patterning and growth. Having faced an immediate issue of self-incompatibility responses, the pathway to fertilization starts once the stigmatic cells recognize a compatible pollen grain, and it continues with numerous players interacting to affect pollen tube growth and the puzzling process of navigation along the transmitting tract. The pollen tube goes through a guidance process that begins with a preovular stage (i.e. prior to the influence of the target ovule), with interactions with factors from the transmitting tissue. In the subsequent ovular-guidance stage a specific relationship develops between the pollen tube and its target ovule. This stage is divided into the funicular and micropylar guidance steps, with numerous receptors working in signalling cascades. Finally, just after the pollen tube has passed beyond the synergids, fusion of the gametes occurs and the developing seed-the ultimate aim of the process-will start to mature. In this paper, we review the existing knowledge of the crucial biological processes involved in pollen-pistil interactions that give rise to the new seed.


Subject(s)
Plant Development , Plant Physiological Phenomena , Pollen Tube/physiology , Pollination , Seeds/growth & development , Cell Communication , Seeds/embryology
8.
Ann Bot ; 117(6): 949-61, 2016 05.
Article in English | MEDLINE | ID: mdl-26994101

ABSTRACT

BACKGROUND AND AIMS: Quercus suber L. (cork oak) is one of the most important monoecious tree species in semi-arid regions of Southern Europe, with a high ecological value and economic potential. However, as a result of its long reproductive cycle, complex reproductive biology and recalcitrant seeds, conventional breeding is demanding. In its complex reproductive biology, little is known about the most important changes that occur during female gametogenesis. Arabinogalactan proteins (AGPs) and pectins are the main components of plant cell walls and have been reported to perform common functions in cell differentiation and organogenesis of reproductive plant structures. AGPs have been shown to serve as important molecules in several steps of the reproductive process in plants, working as signalling molecules, associated with the sporophyte-gametophyte transition, and pectins have been implicated in pollen-pistil interactions before double fertilization. In this study, the distribution of AGP and pectin epitopes was assessed during female gametogenesis. METHODS: Immunofluorescence labelling of female flower cells was performed with a set of monoclonal antibodies (mAbs) directed to the carbohydrate moiety of AGPs (JIM8 and JIM13) and pectic homogalacturonans (HGs) (mAbs JIM5 and JIM7). KEY RESULTS: The selective labelling obtained with AGP and pectin mAbs JIM8, JIM13, JIM5 and JIM7 during Q. suber female gametogenesis shows that AGPs and pectic HG can work as markers for mapping gametophytic cell differentiation in this species. Pectic HG showed different distribution patterns, depending on their levels of methyl esterification. Methyl-esterified HGs showed a uniform distribution in the overall female flower cells before fertilization and a more specific pattern after fertilization. A low methyl-ester pectin distribution pattern during the different developmental stages appears to be related to the pathway that pollen tubes follow to reach the embryo sac. AGPs showed a more sparse distribution in early stages of development, but specific labelling is shown in the synergids and their filiform apparatus. CONCLUSIONS: The labelling obtained with anti-AGP and anti-pectin mAbs in Q. suber female flower cells showed a dynamic distribution of AGPs and pectic HGs, which may render these molecules useful molecular markers during female gametogenesis. Changes occurring during development will be determined in order to help describe cork oak ovule structural properties before and after fertilization, providing new insight to better understand Q. suber female gametogenesis.


Subject(s)
Inflorescence/metabolism , Mucoproteins/metabolism , Pectins/metabolism , Quercus/metabolism , Epitopes/metabolism , Mucoproteins/immunology , Ovule/metabolism , Pectins/immunology , Plant Proteins/immunology , Plant Proteins/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism
9.
J Exp Bot ; 71(20): 6697, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32860404
10.
Ann Bot ; 115(1): 81-92, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25452249

ABSTRACT

BACKGROUND AND AIMS: Quercus suber (cork oak) is a dominant tree of the Fagaceae in forests of the south-west Iberian Peninsula. It is monoecious with a long progamic phase that provides a comprehensive system for comparative studies in development and sexual reproduction. In this study the distribution of arabinogalactan protein (AGPs) and pectin epitopes in anthers of Q. suber was assessed to map these hydroxyproline-rich glycoproteins and the galacturonate-rich acidic polysaccharides during pollen development. Methods Immunolocalization in male flowers was performed with a set of monoclonal antibodies directed against the carbohydrate moiety that recognizes AGPs and pectins. To identify AGP genes involved in cork oak male flower development, a search was conducted for annotated AGP genes in the available transcriptome data of the Cork Oak EST Consortium database (www.corkoakdb.org). KEY RESULTS: Ubiquitous labelling in all cell types was obtained with anti-homogalacturan antibodies for methyl-esterified pectins. In contrast, the antibody that labelled non-methyl-esterified homogalacturans had a preferential presence in microsporocyte cells walls at the beginning of pollen development. Intense labelling was obtained with anti-AGP antibodies both in the tapetum and in the intine wall near the pollen apertures and later in the generative cell wall and vegetative cell. Evaluation of the putative AGPs highly expressed in the male gametophyte was achieved by quantitative RT-PCR analysis in male and female cork oak flowers. CONCLUSIONS: Four putative AGP genes were identified that are preferentially expressed in the male flower compared with the female flower. The putative Arabidopsis thaliana orthologues of these genes are associated with preferential expression in pollen, suggesting that the AGPs probably play a significant role in cork oak reproduction.


Subject(s)
Mucoproteins/genetics , Pectins/genetics , Quercus/growth & development , Quercus/genetics , Amino Acid Sequence , Epitopes/genetics , Epitopes/metabolism , Flowers/growth & development , Flowers/metabolism , Molecular Sequence Data , Mucoproteins/metabolism , Organ Specificity , Pectins/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/growth & development , Quercus/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
12.
J Exp Bot ; 65(18): 5459-71, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25053647

ABSTRACT

Arabinogalactan proteins (AGPs) are heavily glycosylated proteins existing in all members of the plant kingdom and are differentially distributed through distinctive developmental stages. Here, we showed the individual distributions of specific Arabidopsis AGPs: AGP1, AGP9, AGP12, AGP15, and AGP23, throughout reproductive tissues and indicated their possible roles in several reproductive processes. AGP genes specifically expressed in female tissues were identified using available microarray data. This selection was confirmed by promoter analysis using multiple green fluorescent protein fusions to a nuclear localization signal, ß-glucuronidase fusions, and in situ hybridization as approaches to confirm the expression patterns of the AGPs. Promoter analysis allowed the detection of a specific and differential presence of these proteins along the pathway followed by the pollen tube during its journey to reach the egg and the central cell inside the embryo sac. AGP1 was expressed in the stigma, style, transmitting tract, and the chalazal and funiculus tissues of the ovules. AGP9 was present along the vasculature of the reproductive tissues and AGP12 was expressed in the stigmatic cells, chalazal and funiculus cells of the ovules, and in the septum. AGP15 was expressed in all pistil tissues, except in the transmitting tract, while AGP23 was specific to the pollen grain and pollen tube. The expression pattern of these AGPs provides new evidence for the detection of a subset of specific AGPs involved in plant reproductive processes, being of significance for this field of study. AGPs are prominent candidates for male-female communication during reproduction.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flowers/metabolism , Mucoproteins/metabolism , Pollen Tube/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Mucoproteins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Plant Physiol Biochem ; 210: 108631, 2024 May.
Article in English | MEDLINE | ID: mdl-38657550

ABSTRACT

Glutamine synthetase (GS), an initial enzyme in nitrogen (N) plant metabolism, exists as a group of isoenzymes found in both cytosolic (GS1) and plastids (GS2) and has gathered significant attention for enhancing N use efficiency and crop yield. This work focuses on the A. thaliana GLN1;3 and GLN1;5 genes, the two predicted most expressed genes in seeds, among the five isogenes encoding GS1 in this species. The expression patterns were studied using transgenic marker line plants and qPCR during seed development and germination. The observed patterns highlight distinct functions for the two genes and confirm GLN1;5 as the most highly expressed GS1 gene in seeds. The GLN1;5, expression, oriented towards hypocotyl and cotyledons, suggests a role in protein turnover during germination, while the radicle-oriented expression of GLN1;3 supports a function in early external N uptake. While the single mutants exhibited a normal phenotype, except for a decrease in seed parameters, the double gln1;3/gln1;5 mutant displayed a germination delay, substantial impairment in growth, nitrogen metabolism, and number and quality of the seeds, as well as a diminishing in flowering. Although seed and pollen-specific, GLN1;5 expression is upregulated in the meristems of the gln1;3 mutants, filling the lack of GLN1;3 and ensuring the normal functioning of the gln1;3 mutants. These findings validate earlier in silico data on the expression patterns of GLN1;3 and GL1;5 genes in seeds, explore their different functions, and underscore their essential role in plant growth, seed production, germination, and early stages of plant development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Germination , Glutamate-Ammonia Ligase , Seeds , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/enzymology , Seeds/growth & development , Seeds/genetics , Seeds/enzymology , Germination/genetics , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytosol/enzymology , Cytosol/metabolism , Nitrogen/metabolism , Plants, Genetically Modified , Isoenzymes/genetics , Isoenzymes/metabolism
14.
Plant Sci ; 348: 112231, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39154893

ABSTRACT

In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs). AGPs are highly glycosylated proteins decorated by arabinogalactan side chains, representing 90 % of the AGP molecule. AGP glycosylation is initiated by a reaction catalysed by hydroxyproline-O-galactosyltransferases (Hyp-GALTs), specifically eight of them (GALT2-9), which add the first galactose to Hyp residues. Five Hyp-GALTs (GALT2, 5, 7, 8 and 9) were previously described as essential for AGP functions in pollen and ovule development, pollen-pistil interactions, and seed morphology. In the present work, a higher order Hyp-GALT mutant (23456789) was studied, with a high degree of under-glycosylated AGPs, to gain deeper insight into the crucial roles of these eight enzymes in female reproductive tissues. Notably, the 23456789 mutant demonstrated a high quantity of unfertilized ovules, displaying abnormal callose accumulation both at the micropylar region and, sometimes, throughout the entire embryo sac. Additionally, this mutant displayed ovules with abnormal embryo sacs, had a disrupted spatiotemporal distribution of AGPs in female reproductive tissues, and showed abnormal seed and embryo development, concomitant with a reduction in AGP-GlcA levels. This study revealed that at least three more enzymes exhibit Hyp-O-GALT activity in Arabidopsis (GALT3, 4 and 6), and reinforces the crucial importance of AGP carbohydrates in carrying out the biological functions of AGPs during plant reproduction.

15.
Plant Reprod ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294499

ABSTRACT

KEY MESSAGE: GPI anchor addition is important for JAGGER localization and in vivo function. Loss of correct GPI anchor addition in JAGGER, negatively affects its localization and function. In flowering plants, successful double fertilization requires the correct delivery of two sperm cells to the female gametophyte inside the ovule. The delivery of a single pair of sperm cells is achieved by the entrance of a single pollen tube into one female gametophyte. To prevent polyspermy, Arabidopsis ovules avoid the attraction of multiple pollen tubes to one ovule-polytubey block. In Arabidopsis jagger mutants, a significant number of ovules attract more than one pollen tube to an ovule due to an impairment in synergid degeneration. JAGGER encodes a putative arabinogalactan protein which is predicted to be anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Here, we show that JAGGER fused to citrine yellow fluorescent protein (JAGGER-cYFP) is functional and localizes mostly to the periphery of ovule integuments and transmitting tract cells. We further investigated the importance of GPI-anchor addition domains for JAGGER localization and function. Different JAGGER proteins with deletions in predicted ω-site regions and GPI attachment signal domain, expected to compromise the addition of the GPI anchor, led to disruption of JAGGER localization in the cell periphery. All JAGGER proteins with disrupted localization were also not able to rescue the polytubey phenotype, pointing to the importance of GPI-anchor addition to in vivo function of the JAGGER protein.

16.
Nat Commun ; 15(1): 5875, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997266

ABSTRACT

Correct regulation of intercellular communication is a fundamental requirement for cell differentiation. In Arabidopsis thaliana, the female germline differentiates from a single somatic ovule cell that becomes encased in ß-1,3-glucan, a water insoluble polysaccharide implicated in limiting pathogen invasion, regulating intercellular trafficking in roots, and promoting pollen development. Whether ß-1,3-glucan facilitates germline isolation and development has remained contentious, since limited evidence is available to support a functional role. Here, transcriptional profiling of adjoining germline and somatic cells revealed differences in gene expression related to ß-1,3-glucan metabolism and signalling through intercellular channels (plasmodesmata). Dominant expression of a ß-1,3-glucanase in the female germline transiently perturbed ß-1,3-glucan deposits, allowed intercellular movement of tracer molecules, and led to changes in germline gene expression and histone marks, eventually leading to termination of germline development. Our findings indicate that germline ß-1,3-glucan fulfils a functional role in the ovule by insulating the primary germline cell, and thereby determines the success of downstream female gametogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gametogenesis, Plant , Gene Expression Regulation, Plant , Ovule , beta-Glucans , Arabidopsis/metabolism , Arabidopsis/genetics , Ovule/metabolism , Ovule/genetics , beta-Glucans/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gametogenesis, Plant/genetics , Plasmodesmata/metabolism , Pollen/metabolism , Pollen/genetics , Pollen/growth & development , Gene Expression Profiling
17.
BMC Plant Biol ; 13: 7, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23297674

ABSTRACT

BACKGROUND: Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes to search for genetic interactions in the context of pollen tube growth. A yeast two-hybrid experiment for AGP6 and AGP11 was also designed. RESULTS: The lack of two specific AGPs induced a meaningful shift in the gene expression profile. In fact, a high number of genes showed altered expression levels, strengthening the case that AGP6 and AGP11 are involved in complex phenomena. The expression levels of calcium- and signaling-related genes were found to be altered, supporting the known roles of the respective proteins in pollen tube growth. Although the precise nature of the proposed interactions needs further investigation, the putative involvement of AGPs in signaling cascades through calmodulin and protein degradation via ubiquitin was indicated. The expression of stress-, as well as signaling- related, genes was also changed; a correlation that may result from the recognized similarities between signaling pathways in both defense and pollen tube growth.The results of yeast two-hybrid experiments lent further support to these signaling pathways and revealed putative AGP6 and AGP11 interactors implicated in recycling of cell membrane components via endocytosis, through clathrin-mediated endosomes and multivesicular bodies. CONCLUSIONS: The data presented suggest the involvement of AGP6 and AGP11 in multiple signaling pathways, in particular those involved in developmental processes such as endocytosis-mediated plasma membrane remodeling during Arabidopsis pollen development. This highlights the importance of endosomal trafficking pathways which are rapidly emerging as fundamental regulators of the wall physiology.


Subject(s)
Arabidopsis Proteins/metabolism , Mucoproteins/metabolism , Pollen Tube/metabolism , Pollen/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/metabolism
18.
Ann Bot ; 111(2): 183-90, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23186834

ABSTRACT

BACKGROUND AND AIMS: Trithuria is the sole genus of Hydatellaceae, a family of the early-divergent angiosperm lineage Nymphaeales (water-lilies). In this study different arabinogalactan protein (AGP) epitopes in T. submersa were evaluated in order to understand the diversity of these proteins and their functions in flowering plants. METHODS: Immunolabelling of different AGPs and pectin epitopes in reproductive structures of T. submersa at the stage of early seed development was achieved by immunofluorescence of specific antibodies. KEY RESULTS: AGPs in Trithuria pistil tissues could be important as structural proteins and also as possible signalling molecules. Intense labelling was obtained with anti-AGP antibodies both in the anthers and in the intine wall, the latter associated with pollen tube emergence. CONCLUSIONS: AGPs could play a significant role in Trithuria reproduction, due to their specific presence in the pollen tube pathway. The results agree with labellings obtained for Arabidopsis and confirms the importance of AGPs in angiosperm reproductive structures as essential structural components and probably important signalling molecules.


Subject(s)
Flowers/physiology , Magnoliopsida/physiology , Mucoproteins/metabolism , Pollen Tube/physiology , Antibodies, Monoclonal , Epitopes , Flowers/cytology , Flowers/embryology , Flowers/metabolism , Magnoliopsida/cytology , Magnoliopsida/embryology , Magnoliopsida/metabolism , Microscopy, Fluorescence , Mucoproteins/chemistry , Pectins/chemistry , Pectins/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Pollen Tube/cytology , Pollen Tube/embryology , Pollen Tube/metabolism , Reproduction , Seeds/cytology , Seeds/embryology , Seeds/metabolism , Seeds/physiology , Species Specificity , Staining and Labeling , Starch/metabolism
19.
Plant Physiol Biochem ; 194: 449-460, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36502609

ABSTRACT

Each day it is becoming increasingly difficult not to notice the completely new, fast growing, extremely intricate and challenging world of epitranscriptomics as the understanding of RNA methylation is expanding at a hasty rate. Writers (methyltransferases), erasers (demethylases) and readers (RNA-binding proteins) are responsible for adding, removing and recognising methyl groups on RNA, respectively. Several methyltransferases identified in plants are now being investigated and recent studies have shown a connection between RNA-methyltransferases (RNA-MTases) and stress and development processes. However, compared to their animal and bacteria counterparts, the understanding of RNA methyltransferases is still incipient, particularly those located in organelles. Comparative and systematic analyses allowed the tracing of the evolution of these enzymes suggesting the existence of several methyltransferases yet to be characterised. This review outlines the functions of plant nuclear and organellar RNA-MTases in plant development and stress responses and the comparative and evolutionary discoveries made on RNA-MTases across kingdoms.


Subject(s)
Methyltransferases , RNA , Animals , Methyltransferases/genetics , Methyltransferases/metabolism , RNA/metabolism , Methylation , Plants/genetics , Plants/metabolism , Bacteria/metabolism
20.
Biomolecules ; 13(3)2023 03 02.
Article in English | MEDLINE | ID: mdl-36979397

ABSTRACT

Quantitative real-time polymerase chain reaction (qPCR) is a widely used method to analyse the gene expression pattern in the reproductive tissues along with detecting gene levels in mutant backgrounds. This technique requires stable reference genes to normalise the expression level of target genes. Nonetheless, a considerable number of publications continue to present qPCR results normalised to a single reference gene and, to our knowledge, no comparative evaluation of multiple reference genes has been carried out in specific reproductive tissues of Arabidopsis thaliana. Herein, we assessed the expression stability levels of ten candidate reference genes (UBC9, ACT7, GAPC-2, RCE1, PP2AA3, TUA2, SAC52, YLS8, SAMDC and HIS3.3) in two conditional sets: one across flower development and the other using inflorescences from different genotypes. The stability analysis was performed using the RefFinder tool, which combines four statistical algorithms (geNorm, NormFinder, BestKeeper and the comparative ΔCt method). Our results showed that RCE1, SAC52 and TUA2 had the most stable expression in different flower developmental stages while YLS8, HIS3.3 and ACT7 were the top-ranking reference genes for normalisation in mutant studies. Furthermore, we validated our results by analysing the expression pattern of genes involved in reproduction and examining the expression of these genes in published mutant backgrounds. Overall, we provided a pool of appropriate reference genes for expression studies in reproductive tissues of A. thaliana, which will facilitate further gene expression studies in this context. More importantly, we presented a framework that will promote a consistent and accurate analysis of gene expression in any scientific field. Simultaneously, we highlighted the relevance of clearly defining and describing the experimental conditions associated with qPCR to improve scientific reproducibility.


Subject(s)
Arabidopsis , Real-Time Polymerase Chain Reaction/methods , Arabidopsis/genetics , Reproducibility of Results , Gene Expression Regulation, Plant , Flowers/genetics , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL