Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
EMBO J ; 42(13): e112559, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37259596

ABSTRACT

Metastatic colonization of distant organs accounts for over 90% of deaths related to solid cancers, yet the molecular determinants of metastasis remain poorly understood. Here, we unveil a mechanism of colonization in the aggressive basal-like subtype of breast cancer that is driven by the NAD+ metabolic enzyme nicotinamide N-methyltransferase (NNMT). We demonstrate that NNMT imprints a basal genetic program into cancer cells, enhancing their plasticity. In line, NNMT expression is associated with poor clinical outcomes in patients with breast cancer. Accordingly, ablation of NNMT dramatically suppresses metastasis formation in pre-clinical mouse models. Mechanistically, NNMT depletion results in a methyl overflow that increases histone H3K9 trimethylation (H3K9me3) and DNA methylation at the promoters of PR/SET Domain-5 (PRDM5) and extracellular matrix-related genes. PRDM5 emerged in this study as a pro-metastatic gene acting via induction of cancer-cell intrinsic transcription of collagens. Depletion of PRDM5 in tumor cells decreases COL1A1 deposition and impairs metastatic colonization of the lungs. These findings reveal a critical activity of the NNMT-PRDM5-COL1A1 axis for cancer cell plasticity and metastasis in basal-like breast cancer.


Subject(s)
Neoplasms , Nicotinamide N-Methyltransferase , Animals , Mice , Nicotinamide N-Methyltransferase/genetics , Nicotinamide N-Methyltransferase/metabolism , Neoplasms/metabolism , DNA Methylation , Epigenesis, Genetic
2.
Nature ; 567(7749): 540-544, 2019 03.
Article in English | MEDLINE | ID: mdl-30867597

ABSTRACT

Diversity within or between tumours and metastases (known as intra-patient tumour heterogeneity) that develops during disease progression is a serious hurdle for therapy1-3. Metastasis is the fatal hallmark of cancer and the mechanisms of colonization, the most complex step in the metastatic cascade4, remain poorly defined. A clearer understanding of the cellular and molecular processes that underlie both intra-patient tumour heterogeneity and metastasis is crucial for the success of personalized cancer therapy. Here, using transcriptional profiling of tumours and matched metastases in patient-derived xenograft models in mice, we show cancer-site-specific phenotypes and increased glucocorticoid receptor activity in distant metastases. The glucocorticoid receptor mediates the effects of stress hormones, and of synthetic derivatives of these hormones that are used widely in the clinic as anti-inflammatory and immunosuppressive agents. We show that the increase in stress hormones during breast cancer progression results in the activation of the glucocorticoid receptor at distant metastatic sites, increased colonization and reduced survival. Our transcriptomics, proteomics and phospho-proteomics studies implicate the glucocorticoid receptor in the activation of multiple processes in metastasis and in the increased expression of kinase ROR1, both of which correlate with reduced survival. The ablation of ROR1 reduced metastatic outgrowth and prolonged survival in preclinical models. Our results indicate that the activation of the glucocorticoid receptor increases heterogeneity and metastasis, which suggests that caution is needed when using glucocorticoids to treat patients with breast cancer who have developed cancer-related complications.


Subject(s)
Breast Neoplasms/pathology , Glucocorticoids/adverse effects , Glucocorticoids/metabolism , Neoplasm Metastasis/pathology , Animals , Breast Neoplasms/enzymology , Cell Line, Tumor , Dexamethasone/adverse effects , Dexamethasone/metabolism , Disease Progression , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Protein Kinases/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Glucocorticoid/metabolism , Signal Transduction/drug effects , Survival Rate
3.
J Mammary Gland Biol Neoplasia ; 28(1): 13, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37294349

ABSTRACT

The protein tyrosine phosphatase SHP2 activates oncogenic pathways downstream of most receptor tyrosine kinases (RTK) and has been implicated in various cancer types, including the highly aggressive subtype of triple-negative breast cancer (TNBC). Although allosteric inhibitors of SHP2 have been developed and are currently being evaluated in clinical trials, neither the mechanisms of the resistance to these agents, nor the means to circumvent such resistance have been clearly defined. The PI3K signaling pathway is also hyperactivated in breast cancer and contributes to resistance to anticancer therapies. When PI3K is inhibited, resistance also develops for example via activation of RTKs. We therefore assessed the effect of targeting PI3K and SHP2 alone or in combination in preclinical models of metastatic TNBC. In addition to the beneficial inhibitory effects of SHP2 alone, dual PI3K/SHP2 treatment decreased primary tumor growth synergistically, blocked the formation of lung metastases, and increased survival in preclinical models. Mechanistically, transcriptome and phospho-proteome analyses revealed that resistance to SHP2 inhibition is mediated by PDGFRß-evoked activation of PI3K signaling. Altogether, our data provide a rationale for co-targeting of SHP2 and PI3K in metastatic TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Phosphatidylinositol 3-Kinases/therapeutic use , Signal Transduction , Cell Line, Tumor
4.
Nature ; 515(7525): 130-3, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25337873

ABSTRACT

Secretion of C-C chemokine ligand 2 (CCL2) by mammary tumours recruits CCR2-expressing inflammatory monocytes to primary tumours and metastatic sites, and CCL2 neutralization in mice inhibits metastasis by retaining monocytes in the bone marrow. Here we report a paradoxical effect of CCL2 in four syngeneic mouse models of metastatic breast cancer. Surprisingly, interruption of CCL2 inhibition leads to an overshoot of metastases and accelerates death. This is the result of monocyte release from the bone marrow and enhancement of cancer cell mobilization from the primary tumour, as well as blood vessel formation and increased proliferation of metastatic cells in the lungs in an interleukin (IL)-6- and vascular endothelial growth factor (VEGF)-A-dependent manner. Notably, inhibition of CCL2 and IL-6 markedly reduced metastases and increased survival of the animals. CCL2 has been implicated in various neoplasias and adopted as a therapeutic target. However, our results call for caution when considering anti-CCL2 agents as monotherapy in metastatic disease and highlight the tumour microenvironment as a critical determinant of successful anti-metastatic therapy.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/metabolism , Neoplasm Metastasis , Neovascularization, Pathologic , Animals , Blood Vessels/cytology , Blood Vessels/drug effects , Blood Vessels/growth & development , Cell Proliferation/drug effects , Disease Models, Animal , Female , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Lung Neoplasms/blood supply , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , Monocytes/cytology , Monocytes/metabolism , Neoplasm Metastasis/drug therapy , Neovascularization, Pathologic/drug therapy , Survival Analysis , Tumor Microenvironment , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
5.
Proc Natl Acad Sci U S A ; 110(8): 3017-22, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23341610

ABSTRACT

The TrkC neurotrophin receptor belongs to the functional dependence receptor family, members of which share the ability to induce apoptosis in the absence of their ligands. Such a trait has been hypothesized to confer tumor-suppressor activity. Indeed, cells that express these receptors are thought to be dependent on ligand availability for their survival, a mechanism that inhibits uncontrolled tumor cell proliferation and migration. TrkC is a classic tyrosine kinase receptor and therefore generally considered to be a proto-oncogene. We show here that TrkC expression is down-regulated in a large fraction of human colorectal cancers, mainly through promoter methylation. Moreover, we show that TrkC silencing by promoter methylation is a selective advantage for colorectal cell lines to limit tumor cell death. Furthermore, reestablished TrkC expression in colorectal cancer cell lines is associated with tumor cell death and inhibition of in vitro characteristics of cell transformation, as well as in vivo tumor growth. Finally, we provide evidence that a mutation of TrkC detected in a sporadic cancer is a loss-of-proapoptotic function mutation. Together, these data support the conclusion that TrkC is a colorectal cancer tumor suppressor.


Subject(s)
Colonic Neoplasms/genetics , Receptor, trkC/genetics , Apoptosis , Cell Line, Tumor , DNA Methylation , Down-Regulation , Genes, Tumor Suppressor , Humans , Ligands , Promoter Regions, Genetic , Proto-Oncogene Mas
6.
J Biol Chem ; 287(6): 3987-99, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22179604

ABSTRACT

Netrins form a heterogeneous family of laminin-related molecules with multifunctional activities. Netrin-4, the most distant member of this family, is related to the laminin ß chain and has recently been proposed to play an important role in embryonic and pathological angiogenesis. However, the data reported so far lead to the apparently contradictory conclusions supporting Netrin-4 as either a pro- or an anti-angiogenic factor. To elucidate this controversy, Netrin-4 was analyzed for a vascular activity in both cell-based models (human umbilical vein endothelial cells and human umbilical artery endothelial cells) and two zebrafish models: the wild-type AB/Tü strain and the transgenic Tg(fli1a:EGFP)(y1) strain. We show that Netrin-4 is expressed in endothelial cells and in the zebrafish vascular system. We also show evidence that Netrin-4 activates various kinases and induces various biological effects directly linked to angiogenesis in vitro. Using a morpholinos strategy, we demonstrate that Netrin-4 expression is crucial for zebrafish vessel formation and that a blood vessel formation defect induced by netrin-4 morpholinos can be partially rescued through drug delivery leading to protein kinase activation. Together these data underscore the crucial role of Netrin-4 in blood vessel formation and the involvement of protein kinases activation in Netrin-4-induced biological effects related to vascular development.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Endothelial Cells/metabolism , Neovascularization, Physiologic/physiology , Nerve Growth Factors/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Animals, Genetically Modified/embryology , Animals, Genetically Modified/genetics , Cells, Cultured , Endothelial Cells/cytology , Enzyme Activation/drug effects , Enzyme Activation/physiology , Humans , Morpholinos/pharmacology , Neovascularization, Physiologic/drug effects , Nerve Growth Factors/genetics , Netrins , Protein Kinases/genetics , Protein Kinases/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
7.
Elife ; 122023 04 14.
Article in English | MEDLINE | ID: mdl-37057894

ABSTRACT

The actin cytoskeleton is tightly controlled by RhoGTPases, actin binding-proteins and nucleation-promoting factors to perform fundamental cellular functions. We have previously shown that ERK3, an atypical MAPK, controls IL-8 production and chemotaxis (Bogueka et al., 2020). Here, we show in human cells that ERK3 directly acts as a guanine nucleotide exchange factor for CDC42 and phosphorylates the ARP3 subunit of the ARP2/3 complex at S418 to promote filopodia formation and actin polymerization, respectively. Consistently, depletion of ERK3 prevented both basal and EGF-dependent RAC1 and CDC42 activation, maintenance of F-actin content, filopodia formation, and epithelial cell migration. Further, ERK3 protein bound directly to the purified ARP2/3 complex and augmented polymerization of actin in vitro. ERK3 kinase activity was required for the formation of actin-rich protrusions in mammalian cells. These findings unveil a fundamentally unique pathway employed by cells to control actin-dependent cellular functions.


Subject(s)
Actins , Mitogen-Activated Protein Kinase 6 , Animals , Humans , Actins/metabolism , Mitogen-Activated Protein Kinase 6/metabolism , Polymerization , Cell Movement , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Mammals/metabolism , rac1 GTP-Binding Protein/metabolism
8.
Gastroenterology ; 141(6): 2039-46, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21893118

ABSTRACT

BACKGROUND & AIMS: Expression of the netrin-1 dependence receptor UNC5C is reduced in many colorectal tumors; mice with the UNC5C mutations have increased progression of intestinal tumors. We investigated whether specific variants in UNC5C increase risk of colorectal cancer (CRC). METHODS: We analyzed the sequence of UNC5C in blood samples from 1801 patients with CRC and 4152 controls from 3 cohorts (France, United States, and Finland). Almost all cases from France and the United States had familial CRC; of the Finnish cases, 92 of 984 were familial. We analyzed whether CRC segregates with the UNC5C variant A628K in 3 families with histories of CRC. We also performed haplotype analysis to determine the origin of this variant. RESULTS: Of 817 patients with familial CRC, 14 had 1 of 4 different, unreported missense variants in UNC5C. The variants p.Asp353Asn (encodes D353N), p.Arg603Cys (encodes R603C), and p.Gln630Glu (encodes Q630E) did not occur significantly more often in cases than controls. The variant p.Ala628Lys (A628K) was detected in 3 families in the French cohort (odds ratio, 8.8; Wald's 95% confidence interval, 1.47-52.93; P = .03) and in 2 families in the US cohort (odds ratio, 1.9; P = .6) but was not detected in the Finnish cohort; UNC5C A628K segregated with CRC in families. Three families with A628K had a 109-kilobase identical haplotype that spanned most of UNC5C, indicating recent origin of this variant in white subjects (14 generations; 95% confidence interval, 6-36 generations). Transfection of HEK293T cells with UNC5C-A628K significantly reduced apoptosis compared with wild-type UNC5C, measured in an assay of active caspase-3. CONCLUSIONS: Inherited mutations in UNC5C prevent apoptosis and increase risk of CRC.


Subject(s)
Adenomatous Polyposis Coli/genetics , Apoptosis/genetics , Mutation, Missense/genetics , Receptors, Cell Surface/genetics , Adenomatous Polyposis Coli/blood , Case-Control Studies , Cohort Studies , DNA Mutational Analysis , Genetic Predisposition to Disease , Haplotypes/genetics , Humans , Immunoblotting , Immunohistochemistry , Netrin Receptors , Pedigree , Polymerase Chain Reaction , Receptors, Cell Surface/blood , Risk Factors
9.
Proc Natl Acad Sci U S A ; 106(40): 17146-51, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19721007

ABSTRACT

Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-kappaB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-kappaB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression.


Subject(s)
Colorectal Neoplasms/genetics , Inflammatory Bowel Diseases/genetics , Nerve Growth Factors/genetics , Tumor Suppressor Proteins/genetics , Up-Regulation , Animals , Apoptosis , Caspase 3/metabolism , Cell Line , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease Progression , Female , HCT116 Cells , HT29 Cells , Humans , Immunohistochemistry , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Nerve Growth Factors/metabolism , Netrin-1 , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Tumor Suppressor Proteins/metabolism
10.
Oncogene ; 41(39): 4459-4473, 2022 09.
Article in English | MEDLINE | ID: mdl-36008466

ABSTRACT

Plasticity delineates cancer subtypes with more or less favourable outcomes. In breast cancer, the subtype triple-negative lacks expression of major differentiation markers, e.g., estrogen receptor α (ERα), and its high cellular plasticity results in greater aggressiveness and poorer prognosis than other subtypes. Whether plasticity itself represents a potential vulnerability of cancer cells is not clear. However, we show here that cancer cell plasticity can be exploited to differentiate triple-negative breast cancer (TNBC). Using a high-throughput imaging-based reporter drug screen with 9 501 compounds, we have identified three polo-like kinase 1 (PLK1) inhibitors as major inducers of ERα protein expression and downstream activity in TNBC cells. PLK1 inhibition upregulates a cell differentiation program characterized by increased DNA damage, mitotic arrest, and ultimately cell death. Furthermore, cells surviving PLK1 inhibition have decreased tumorigenic potential, and targeting PLK1 in already established tumours reduces tumour growth both in cell line- and patient-derived xenograft models. In addition, the upregulation of genes upon PLK1 inhibition correlates with their expression in normal breast tissue and with better overall survival in breast cancer patients. Our results indicate that differentiation therapy based on PLK1 inhibition is a potential alternative strategy to treat TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Breast/pathology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Estrogen Receptor alpha , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
11.
Proc Natl Acad Sci U S A ; 105(12): 4850-5, 2008 Mar 25.
Article in English | MEDLINE | ID: mdl-18353983

ABSTRACT

Netrin-1, an axon navigation cue was proposed to play a crucial role during colorectal tumorigenesis by regulating apoptosis. The netrin-1 receptors DCC and UNC5H were shown to belong to the family of dependence receptors that share the ability to induce apoptosis in the absence of their ligands. Such a trait confers on these receptors a tumor suppressor activity. Expression of one of these dependence receptors at the surface of a tumor cell is indeed speculated to render this cell dependent on ligand availability for its survival, hence inhibiting uncontrolled cell proliferation or metastasis. Consequently, it is a selective advantage for a tumor cell to lose this dependence receptor activity, as previously described with losses of DCC and UNC5H expression in human cancers. However, the model predicts that a similar advantage may be obtained by gaining autocrine expression of the ligand. We describe here that, unlike human nonmetastatic breast tumors, a large fraction of metastatic breast cancers overexpress netrin-1. Moreover, we show that netrin-1-expressing mammary metastatic tumor cell lines undergo apoptosis when netrin-1 expression is experimentally decreased or when decoy soluble receptor ectodomains are added. Such treatments prevent metastasis formation both in a syngenic mouse model of lung colonization of a mammary cancer cell line and in a model of spontaneous lung metastasis of xenografted human breast tumor. Thus, netrin-1 expression observed in a large fraction of human metastatic breast tumors confers a selective advantage for tumor cell survival and potentially represents a promising target for alternative anticancer therapeutic strategies.


Subject(s)
Breast Neoplasms/pathology , Nerve Growth Factors/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Autocrine Communication , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Cell Death , Cell Line, Tumor , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/secondary , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Nerve Growth Factors/genetics , Netrin-1 , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Proteins/genetics
12.
EMBO Mol Med ; 13(4): e13162, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33751828

ABSTRACT

Metastasis is the main cause of deaths related to solid cancers. Active transcriptional programmes are known to regulate the metastatic cascade but the molecular determinants of metastatic colonization remain elusive. Using an inducible piggyBac (PB) transposon mutagenesis screen, we have shown that overexpression of the transcription factor nuclear factor IB (NFIB) alone is sufficient to enhance primary mammary tumour growth and lung metastatic colonization. Mechanistically and functionally, NFIB directly increases expression of the oxidoreductase ERO1A, which enhances HIF1α-VEGFA-mediated angiogenesis and colonization, the last and fatal step of the metastatic cascade. NFIB is thus clinically relevant: it is preferentially expressed in the poor-prognostic group of basal-like breast cancers, and high expression of the NFIB/ERO1A/VEGFA pathway correlates with reduced breast cancer patient survival.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Female , Humans , NFI Transcription Factors , Neovascularization, Pathologic , Oxidoreductases
13.
Biochim Biophys Acta Gene Regul Mech ; 1863(5): 194507, 2020 05.
Article in English | MEDLINE | ID: mdl-32113984

ABSTRACT

Estrogen receptor (ERα) is central in driving the development of hormone-dependent breast cancers. A major challenge in treating these cancers is to understand and overcome endocrine resistance. The Megakaryoblastic Leukemia 1 (MKL1, MRTFA) protein is a master regulator of actin dynamic and cellular motile functions, whose nuclear translocation favors epithelial-mesenchymal transition. We previously demonstrated that nuclear accumulation of MKL1 in estrogen-responsive breast cancer cell lines promotes hormonal escape. In the present study, we confirm through tissue microarray analysis that nuclear immunostaining of MKL1 is associated with endocrine resistance in a cohort of breast cancers and we decipher the underlining mechanisms using cell line models. We show through gene expression microarray analysis that the nuclear accumulation of MKL1 induces dedifferentiation leading to a mixed luminal/basal phenotype and suppresses estrogen-mediated control of gene expression. Chromatin immunoprecipitation of DNA coupled to high-throughput sequencing (ChIP-Seq) shows a profound reprogramming in ERα cistrome associated with a massive loss of ERα binding sites (ERBSs) generally associated with lower ERα-binding levels. Novel ERBSs appear to be associated with EGF and RAS signaling pathways. Collectively, these results highlight a major role of MKL1 in the loss of ERα transcriptional activity observed in certain cases of endocrine resistances, thereby contributing to breast tumor cells malignancy.


Subject(s)
Breast Neoplasms/metabolism , Cell Nucleus/metabolism , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic , Trans-Activators/metabolism , Active Transport, Cell Nucleus , Breast Neoplasms/genetics , Estrogens/metabolism , Female , Humans , MCF-7 Cells , Protein Binding
14.
Gastroenterology ; 135(4): 1248-57, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18692059

ABSTRACT

BACKGROUND & AIMS: Netrin-1 was recently proposed to play a crucial role during colorectal tumorigenesis by regulating apoptosis. Because netrin-1 receptors belong to the family of dependence receptors, a selective advantage for a tumor is either to lose netrin-1 receptors or to gain autocrine expression of netrin-1. We have investigated whether netrin-1 is up-regulated in colorectal cancer and have searched for a link between NF-kappaB activation and netrin-1 up-regulation. METHODS: The level of netrin-1, netrin-1 receptors, ie, DCC, UNC5H1, UNC5H2, UNC5H3, and the proinflammatory markers cyclooxygenase-2 and inhibitor of nuclear factor-kappaB (IkappaB) alpha were analyzed in a panel of 59 primary sporadic colorectal carcinomas. Netrin-1 expression was investigated in tumor cells and in mouse colonic crypts in response to NF-kappaB activation but also in a mouse model of inflammation-induced colorectal cancer. Binding of NF-kappaB to netrin-1 promoter and effect of NF-kappaB activation to the proapoptotic activity of UNC5H2 were also analyzed. RESULTS: We show that colorectal tumors with a gain of netrin-1 are tumors that display increased activation of the NF-kappaB pathway. Moreover, netrin-1 up-regulation, which is associated with tumor formation in mice, is observed in mouse colonic crypts in response to NF-kappaB activation but also in a mouse model of inflammation-induced colorectal cancer. We demonstrate that the netrin-1 gene is a direct transcriptional target of NF-kappaB. We show that NF-kappaB-induced netrin-1 expression inhibits proapoptotic activity of the netrin-1 receptors. CONCLUSIONS: We propose that NF-kappaB activation that occurs in response to inflammation confers a selective advantage for tumor development through NF-kappaB-mediated netrin-1 up-regulation.


Subject(s)
Colorectal Neoplasms/physiopathology , Gene Expression Regulation, Neoplastic , NF-kappa B/metabolism , Nerve Growth Factors/genetics , Receptors, Cell Surface/metabolism , Tumor Suppressor Proteins/genetics , Animals , Apoptosis/physiology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DCC Receptor , Disease Models, Animal , HCT116 Cells , Humans , Mice , Mice, Inbred BALB C , Nerve Growth Factors/metabolism , Netrin Receptors , Netrin-1 , Receptors, Cell Surface/genetics , Tumor Suppressor Proteins/metabolism , Up-Regulation/physiology
15.
Gastroenterology ; 133(6): 1840-8, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17967459

ABSTRACT

BACKGROUND & AIMS: The UNC5H netrin-1 receptors (UNC5H1-3 also called UNC5A-C) belong to the functional dependence receptors family, which share the ability to induce apoptosis in the absence of their ligands. Such a trait has been hypothesized to confer a tumor-suppressor activity. Indeed, cells harboring these receptors are thought to be dependent on ligand availability for their survival, thereby inhibiting uncontrolled tumor cell proliferation. We investigate here whether UNC5C acts as a tumor suppressor in colorectal malignancies. METHODS: The level of UNC5C was analyzed in a panel of 86 primary sporadic colorectal carcinomas. Loss of heterozygosity in the UNC5C locus and epigenetic alterations in the UNC5C promoter were also analyzed. Intestinal tumor progression was monitored in mice bearing both UNC5C and APC1638N mutations, and apoptosis was measured in intestinal tumors developed in UNC5C/APC1638N mutant mice. RESULTS: We show here that UNC5C expression is down-regulated in a large fraction of human colorectal cancers, mainly through promoter methylation. Moreover, in mice, inactivation of UNC5C is associated with increased intestinal tumor progression and a decrease in tumor cell apoptosis. CONCLUSIONS: The loss of UNC5C expression observed in human colorectal cancer is a selective advantage for tumor progression, in agreement with the dependence receptor hypothesis. Thus, the UNC5C dependence receptor is a tumor suppressor that regulates sporadic colorectal cancer.


Subject(s)
Colorectal Neoplasms/genetics , Receptors, Cell Surface/genetics , Animals , Apoptosis , Cell Line, Tumor , Disease Progression , Down-Regulation , Genes, Tumor Suppressor , Humans , Methylation , Mice , Netrin Receptors , Receptors, Cell Surface/metabolism
16.
Stem Cells Dev ; 26(9): 646-655, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28112572

ABSTRACT

Tumorigenic cells can be redirected to adopt a normal phenotype when transplanted into cleared mammary fat pads of juvenile female mice in specific ratios with normal epithelial cells. The redirected tumorigenic cells enter stem cell niches and provide progeny that differentiate into all mammary epithelial subtypes. We have developed an in vitro model that mimics the in vivo phenomenon. The shift in phenotype to redirection should be accomplished through a return to a normal gene expression state. To measure this shift, we interrogated the transcriptome of various in vitro model states in search for casual genes. For this study, expression of growth factors, cytokines, and their associated receptors was examined. In all, we queried 251 growth factor and cytokine-related genes. We found numerous growth factor and cytokine genes whose expression levels switched from expression levels seen in cancer cells to expression levels observed in normal cells. The comparisons of gene expression between normal mammary epithelial cells, tumor-derived cells, and redirected cancer cells have revealed insight into active and inactive growth factors and cytokines in cancer cell redirection.


Subject(s)
Cell Differentiation/genetics , Epithelial Cells/metabolism , Gene Expression Profiling , Intercellular Signaling Peptides and Proteins/genetics , Receptors, Growth Factor/genetics , Animals , Cell Line, Tumor , Cellular Microenvironment/genetics , Cytokines/genetics , Epithelial Cells/cytology , Female , Humans , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mice, Transgenic , Receptors, Cytokine/genetics
17.
PLoS One ; 12(6): e0179265, 2017.
Article in English | MEDLINE | ID: mdl-28594912

ABSTRACT

Introducing tumor-derived cells into normal mammary stem cell niches at a sufficiently high ratio of normal to tumorous cells causes those tumor cells to undergo a change to normal mammary phenotype and yield normal mammary progeny. This phenomenon has been termed cancer cell redirection. We have developed an in vitro model that mimics in vivo redirection of cancer cells by the normal mammary microenvironment. Using the RNA profiling data from this cellular model, we examined high-level characteristics of the normal, redirected, and tumor transcriptomes and found the global expression profiles clearly distinguish the three expression states. To identify potential redirection biomarkers that cause the redirected state to shift toward the normal expression pattern, we used mutual information relationships between normal, redirected, and tumor cell groups. Mutual information relationship analysis reduced a dataset of over 35,000 gene expression measurements spread over 13,000 curated gene sets to a set of 20 significant molecular signatures totaling 906 unique loci. Several of these molecular signatures are hallmark drivers of the tumor state. Using differential expression as a guide, we further refined the gene set to 120 core redirection biomarker genes. The expression levels of these core biomarkers are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state.


Subject(s)
Biomarkers, Tumor/metabolism , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Models, Biological , Animals , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Animal/genetics , Mice
18.
Oncotarget ; 8(14): 23750-23759, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28423606

ABSTRACT

EphA4, an Ephrins tyrosine kinase receptor, behaves as a dependence receptor (DR) by triggering cell apoptosis in the absence of its ligand Ephrin-B3. DRs act as conditional tumor suppressors, engaging cell death based on ligand availability; this mechanism is bypassed by overexpression of DRs ligands in some aggressive cancers. The pair EphA4/Ephrin-B3 favors survival of neuronal progenitors of the brain subventricular zone, an area where glioblastoma multiform (GBM) are thought to originate. Here, we report that Ephrin-B3 is highly expressed in human biopsies and that it inhibits EphA4 pro-apoptotic activity in tumor cells. Angiogenesis is directly correlated with GBM aggressiveness and we demonstrate that Ephrin-B3 also supports the survival of endothelial cells in vitro and in vivo. Lastly, silencing of Ephrin-B3 decreases tumor vascularization and growth in a xenograft mice model. Interference with EphA4/Ephrin-B3 interaction could then be envisaged as a relevant strategy to slow GBM growth by enhancing EphA4-induced cell death.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Ephrin-B3/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Receptor, EphA4/metabolism , Animals , Apoptosis/physiology , Brain Neoplasms/genetics , Cell Line, Tumor , Chick Embryo , Female , Glioblastoma/genetics , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Nude , Zebrafish
19.
Oncotarget ; 7(50): 82289-82304, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27793045

ABSTRACT

The extracellular serine protease inhibitor serpinE2 is overexpressed in breast cancer and has been shown to foster metastatic spread. Here, we investigated the hypothesis that serpinE2 creates tumor-promoting conditions in the tumor microenvironment (TME) by affecting extracellular matrix remodeling. Using two different breast cancer models, we show that blocking serpinE2, either by knock-down (KD) in tumor cells or in response to a serpinE2 binding antibody, decreases metastatic dissemination from primary tumors to the lungs. We demonstrate that in response to serpinE2 KD or antibody treatment there are dramatic changes in the TME. Multiphoton intravital imaging revealed deposition of a dense extracellular collagen I matrix encapsulating serpinE2 KD or antibody-treated tumors. This is accompanied by a reduction in the population of tumor-promoting macrophages, as well as a decrease in chemokine ligand 2, which is known to affect macrophage abundance and polarization. In addition, TIMP-1 secretion is increased, which may directly inhibit matrix metalloproteases critical for collagen degradation in the tumor. In summary, our findings suggest that serpinE2 is required in the extracellular milieu of tumors where it acts in multiple ways to regulate tumor matrix deposition, thereby controlling tumor cell dissemination.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement , Extracellular Matrix/metabolism , Lung Neoplasms/metabolism , Macrophages/metabolism , Serpin E2/metabolism , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Chemokine CCL2/metabolism , Collagen Type I/metabolism , Extracellular Matrix/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Macrophages/drug effects , Macrophages/pathology , Mice, Inbred BALB C , Mice, SCID , Neoplasm Invasiveness , Phenotype , RNA Interference , Serpin E2/antagonists & inhibitors , Serpin E2/genetics , Signal Transduction , Tissue Inhibitor of Metalloproteinase-1/metabolism , Transfection , Tumor Microenvironment , Xenograft Model Antitumor Assays
20.
Dev Cell ; 16(4): 614-20, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19386270

ABSTRACT

Netrin-1 was recently proposed to play an important role in embryonic and pathological angiogenesis. However, data reported led to the apparently contradictory conclusions that netrin-1 is either a pro- or an antiangiogenic factor. Here, we reconcile these opposing observations by demonstrating that netrin-1 acts as a survival factor for endothelial cells, blocking the proapoptotic effect of the dependence receptor UNC5B and its downstream death signaling effector, the serine/threonine kinase DAPK. The netrin-1 effect on blood vessel development is mimicked by caspase inhibitors in ex vivo assays, and the inhibition of caspase activity, the silencing of the UNC5B receptor, and the silencing of DAPK are each sufficient to rescue the vascular sprouting defects induced by netrin-1 silencing in zebrafish. Thus, the proapoptotic effect of unbound UNC5B and the survival effect of netrin-1 on endothelial cells finely tune the angiogenic process.


Subject(s)
Apoptosis/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Nerve Growth Factors/pharmacology , Tumor Suppressor Proteins/pharmacology , Animals , Apoptosis Regulatory Proteins/metabolism , Blood Vessels/abnormalities , Blood Vessels/drug effects , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Caspase Inhibitors , Death-Associated Protein Kinases , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/drug effects , Endothelial Cells/enzymology , Enzyme Inhibitors/pharmacology , Gene Silencing/drug effects , Humans , In Vitro Techniques , Mice , Netrin Receptors , Netrin-1 , Phenotype , Protein Binding/drug effects , Rats , Receptors, Cell Surface/metabolism , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL