Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 129(21): 211802, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36461969

ABSTRACT

The 96.4 day exposure of a 3 kg ultralow noise germanium detector to the high flux of antineutrinos from a power nuclear reactor is described. A very strong preference (p<1.2×10^{-3}) for the presence of a coherent elastic neutrino-nucleus scattering (CEνNS) component in the data is found, when compared to a background-only model. No such effect is visible in 25 days of operation during reactor outages. The best-fit CEνNS signal is in good agreement with expectations based on a recent characterization of germanium response to sub-keV nuclear recoils. Deviations of order 60% from the standard model CEνNS prediction can be excluded using present data. Standing uncertainties in models of germanium quenching factor, neutrino energy spectrum, and background are examined.

2.
Phys Rev Lett ; 107(14): 141301, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-22107183

ABSTRACT

Fifteen months of cumulative CoGeNT data are examined for indications of an annual modulation, a predicted signature of weakly interacting massive particle (WIMP) interactions. Presently available data support the presence of a modulated component of unknown origin, with parameters prima facie compatible with a galactic halo composed of light-mass WIMPs. Unoptimized estimators yield a statistical significance for a modulation of ∼2.8σ, limited by the short exposure.

3.
Phys Rev Lett ; 106(13): 131301, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21517370

ABSTRACT

We report on several features in the energy spectrum from an ultralow-noise germanium detector operated deep underground. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss an irreducible excess of bulklike events below 3 keV in ionization energy. These could be caused by unknown backgrounds, but also dark matter interactions consistent with DAMA/LIBRA. It is not yet possible to determine their origin. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.

4.
Appl Radiat Isot ; 57(2): 213-23, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12150281

ABSTRACT

Development and performance of a low-background gamma-ray spectrometer are described. The spectrometer consists of a 131% efficient Ge detector in U-type configuration. The passive shielding consists of ultrapure lead of 6" thickness. A top muon guard is used as an active shielding. The spectrometer and shielding are positioned inside a steel room made of 6"-thick pre-World War II iron. The steel room is located underground with 33 m of water-equivalent overburden. The total integrated background rate in the energy range 50-2,700 keV was measured at 0.068 counts per second per 100 cm3 Ge volume. The spectrometer serves as a reference instrument for low-level and highly accurate environmental radioactivity measurements. One specific application of 228Ra determination in drinking water is described. With a 1 l water sample, 1-step chemical procedure, and 1,000 min counting time, a detection limit Ld = 20 mBq/l (0.55 pCi/l) was reached, which meets the EPA mandated limit of 1 pCi/l. Methods of upgrading the spectrometer as well as the predicted improvements in 228Ra detection, including direct counting of water without chemical processing, are discussed.

5.
Phys Rev Lett ; 101(25): 251301, 2008 Dec 19.
Article in English | MEDLINE | ID: mdl-19113689

ABSTRACT

A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of weakly interacting massive particles as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars might lead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular, to next-to-minimal supersymmetric model candidates.

SELECTION OF CITATIONS
SEARCH DETAIL