Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Bioorg Med Chem Lett ; 94: 129456, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37633618

ABSTRACT

Disruption of the HBV capsid assembly process through small-molecule interaction with HBV core protein is a validated target for the suppression of hepatitis B viral replication and the development of new antivirals. Through combination of key structural features associated with two distinct series of capsid assembly modulators, a novel aminochroman-based chemotype was identified. Optimization of anti-HBV potency through generation of SAR in addition to further core modifications provided a series of related functionalized aminoindanes. Key compounds demonstrated excellent cellular potency in addition to favorable ADME and pharmacokinetic profiles and were shown to be highly efficacious in a mouse model of HBV replication. Aminoindane derivative AB-506 was subsequently advanced into clinical development.


Subject(s)
Antiviral Agents , Capsid Proteins , Capsid , Animals , Mice , Antiviral Agents/pharmacology , Disease Models, Animal , Structure-Activity Relationship , Hepatitis B virus/drug effects , Hepatitis B virus/metabolism
2.
J Virol ; 95(18): e0057421, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34191584

ABSTRACT

Noncanonical poly(A) polymerases PAPD5 and PAPD7 (PAPD5/7) stabilize hepatitis B virus (HBV) RNA via the interaction with the viral posttranscriptional regulatory element (PRE), representing new antiviral targets to control HBV RNA metabolism, hepatitis B surface antigen (HBsAg) production, and viral replication. Inhibitors targeting these proteins are being developed as antiviral therapies; therefore, it is important to understand how PAPD5/7 coordinate to stabilize HBV RNA. Here, we utilized a potent small-molecule AB-452 as a chemical probe, along with genetic analyses to dissect the individual roles of PAPD5/7 in HBV RNA stability. AB-452 inhibits PAPD5/7 enzymatic activities and reduces HBsAg both in vitro (50% effective concentration [EC50] ranged from 1.4 to 6.8 nM) and in vivo by 0.94 log10. Our genetic studies demonstrate that the stem-loop alpha sequence within PRE is essential for both maintaining HBV poly(A) tail integrity and determining sensitivity toward the inhibitory effect of AB-452. Although neither single knockout (KO) of PAPD5 nor PAPD7 reduces HBsAg RNA and protein production, PAPD5 KO does impair poly(A) tail integrity and confers partial resistance to AB-452. In contrast, PAPD7 KO did not result in any measurable changes within the HBV poly(A) tails, but cells with both PAPD5 and PAPD7 KO show reduced HBsAg production and conferred complete resistance to AB-452 treatment. Our results indicate that PAPD5 plays a dominant role in stabilizing viral RNA by protecting the integrity of its poly(A) tail, while PAPD7 serves as a second line of protection. These findings inform PAPD5-targeted therapeutic strategies and open avenues for further investigating PAPD5/7 in HBV replication. IMPORTANCE Chronic hepatitis B affects more than 250 million patients and is a major public health concern worldwide. HBsAg plays a central role in maintaining HBV persistence, and as such, therapies that aim at reducing HBsAg through destabilizing or degrading HBV RNA have been extensively investigated. Besides directly degrading HBV transcripts through antisense oligonucleotides or RNA silencing technologies, small-molecule compounds targeting host factors such as the noncanonical poly(A) polymerase PAPD5 and PAPD7 have been reported to interfere with HBV RNA metabolism. Herein, our antiviral and genetic studies using relevant HBV infection and replication models further characterize the interplays between the cis element within the viral sequence and the trans elements from the host factors. PAPD5/7-targeting inhibitors, with oral bioavailability, thus represent an opportunity to reduce HBsAg through destabilizing HBV RNA.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA-Directed DNA Polymerase/metabolism , Hepatitis B virus/genetics , Hepatitis B/virology , RNA Nucleotidyltransferases/metabolism , RNA Stability , RNA, Viral/chemistry , Virus Replication , Animals , Antiviral Agents/pharmacology , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Chromosomal Proteins, Non-Histone/genetics , DNA-Directed DNA Polymerase/genetics , Enzyme Inhibitors/pharmacology , Hep G2 Cells , Hepatitis B/genetics , Hepatitis B/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , RNA Nucleotidyltransferases/antagonists & inhibitors , RNA Nucleotidyltransferases/genetics , RNA, Viral/genetics
3.
Article in English | MEDLINE | ID: mdl-29555628

ABSTRACT

AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC50] = 0.08 to 0.27 µM; EC90 = 0.33 to 1.32 µM) with no significant cytotoxicity (50% cytotoxic concentration > 10 µM). Addition of 40% human serum resulted in a 5-fold increase in the EC50s. AB-423 inhibited HBV genotypes A through D and nucleos(t)ide-resistant variants in vitro Treatment of HepDES19 cells with AB-423 resulted in capsid particles devoid of encapsidated pregenomic RNA and relaxed circular DNA (rcDNA), indicating that it is a class II capsid inhibitor. In a de novo infection model, AB-423 prevented the conversion of encapsidated rcDNA to covalently closed circular DNA, presumably by interfering with the capsid uncoating process. Molecular docking of AB-423 into crystal structures of heteroaryldihydropyrimidines and an SBA and biochemical studies suggest that AB-423 likely also binds to the dimer-dimer interface of core protein. In vitro dual combination studies with AB-423 and anti-HBV agents, such as nucleos(t)ide analogs, RNA interference agents, or interferon alpha, resulted in additive to synergistic antiviral activity. Pharmacokinetic studies with AB-423 in CD-1 mice showed significant systemic exposures and higher levels of accumulation in the liver. A 7-day twice-daily administration of AB-423 in a hydrodynamic injection mouse model of HBV infection resulted in a dose-dependent reduction in serum HBV DNA levels, and combination with entecavir or ARB-1467 resulted in a trend toward antiviral activity greater than that of either agent alone, consistent with the results of the in vitro combination studies. The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B.


Subject(s)
Antiviral Agents/pharmacology , Capsid/metabolism , Hepatitis B virus/drug effects , Hepatitis B/drug therapy , Virus Assembly/drug effects , Animals , Binding Sites , Cell Line, Tumor , DNA, Circular/metabolism , DNA, Viral/blood , DNA, Viral/metabolism , Female , Guanine/analogs & derivatives , Guanine/pharmacology , Hepatitis B virus/growth & development , Humans , Mice , Molecular Docking Simulation , Protein Binding , RNA, Viral/genetics
4.
Bioorg Med Chem Lett ; 28(23-24): 3601-3605, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30392779

ABSTRACT

Synthesis and structure-activity relationships (SAR) of a novel series of benzodiazepinedione-based inhibitors of Clostridium difficile toxin B (TcdB) are described. Compounds demonstrating low nanomolar affinity for TcdB, and which possess improved stability in mouse plasma vs. earlier compounds from this series, have been identified. Optimized compound 11d demonstrates a good pharmacokinetic (PK) profile in mouse and hamster and is efficacious in a hamster survival model of Clostridium difficile infection.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Bacterial Toxins/antagonists & inhibitors , Benzodiazepines/chemistry , Administration, Oral , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Benzodiazepines/pharmacokinetics , Benzodiazepines/therapeutic use , CHO Cells , Clostridioides difficile/metabolism , Clostridium Infections/drug therapy , Clostridium Infections/veterinary , Cricetinae , Cricetulus , Half-Life , Mice , Structure-Activity Relationship
5.
J Med Chem ; 67(2): 1421-1446, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38190324

ABSTRACT

Approved therapies for hepatitis B virus (HBV) treatment include nucleos(t)ides and interferon alpha (IFN-α) which effectively suppress viral replication, but they rarely lead to cure. Expression of viral proteins, especially surface antigen of the hepatitis B virus (HBsAg) from covalently closed circular DNA (cccDNA) and the integrated genome, is believed to contribute to the persistence of HBV. This work focuses on therapies that target the expression of HBV proteins, in particular HBsAg, which differs from current treatments. Here we describe the identification of AB-452, a dihydroquinolizinone (DHQ) analogue. AB-452 is a potent HBV RNA destabilizer by inhibiting PAPD5/7 proteins in vitro with good in vivo efficacy in a chronic HBV mouse model. AB-452 showed acceptable tolerability in 28-day rat and dog toxicity studies, and a high degree of oral exposure in multiple species. Based on its in vitro and in vivo profiles, AB-452 was identified as a clinical development candidate.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Mice , Rats , Animals , Dogs , Hepatitis B virus/genetics , Hepatitis B Surface Antigens , Antiviral Agents/therapeutic use , Hepatitis B, Chronic/drug therapy , RNA, Viral/genetics , Structure-Activity Relationship , Naphthyridines/pharmacology , Naphthyridines/therapeutic use , DNA, Viral/genetics , Virus Replication
6.
Viruses ; 16(3)2024 02 21.
Article in English | MEDLINE | ID: mdl-38543689

ABSTRACT

HBV RNA destabilizers are a class of small-molecule compounds that target the noncanonical poly(A) RNA polymerases PAPD5 and PAPD7, resulting in HBV RNA degradation and the suppression of viral proteins including the hepatitis B surface antigen (HBsAg). AB-161 is a next-generation HBV RNA destabilizer with potent antiviral activity, inhibiting HBsAg expressed from cccDNA and integrated HBV DNA in HBV cell-based models. AB-161 exhibits broad HBV genotype coverage, maintains activity against variants resistant to nucleoside analogs, and shows additive effects on HBV replication when combined with other classes of HBV inhibitors. In AAV-HBV-transduced mice, the dose-dependent reduction of HBsAg correlated with concentrations of AB-161 in the liver reaching above its effective concentration mediating 90% inhibition (EC90), compared to concentrations in plasma which were substantially below its EC90, indicating that high liver exposure drives antiviral activities. In preclinical 13-week safety studies, minor non-adverse delays in sensory nerve conductance velocity were noted in the high-dose groups in rats and dogs. However, all nerve conduction metrics remained within physiologically normal ranges, with no neurobehavioral or histopathological findings. Despite the improved neurotoxicity profile, microscopic findings associated with male reproductive toxicity were detected in dogs, which subsequently led to the discontinuation of AB-161's clinical development.


Subject(s)
Coordination Complexes , Hepatitis B virus , Hepatitis B, Chronic , Naphthalenesulfonates , Male , Mice , Rats , Animals , Dogs , Hepatitis B virus/physiology , Hepatitis B Surface Antigens/genetics , RNA, Viral , RNA, Messenger , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA, Viral/genetics , Hepatitis B, Chronic/drug therapy , DNA, Circular
7.
ACS Infect Dis ; 10(5): 1780-1792, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38651692

ABSTRACT

The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Nucleosides , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/drug effects , Humans , Nucleosides/pharmacology , Nucleosides/chemistry , Animals , Drug Discovery , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Chlorocebus aethiops , Vero Cells , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase
8.
Bioorg Med Chem Lett ; 22(3): 1427-32, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22226655

ABSTRACT

In this Letter we describe the optimization of an aminopurine lead (1) with modest potency and poor overall kinase selectivity which led to the identification of a series of potent, selective JNK inhibitors. Improvement in kinase selectivity was enabled by introduction of an aliphatic side chain at the C-2 position. CC-359 (2) was selected as a potential clinical candidate for diseases manifested by ischemia reperfusion injury.


Subject(s)
2-Aminopurine/chemistry , 2-Aminopurine/pharmacology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Purines/chemistry , Reperfusion Injury/enzymology , Animals , Catalytic Domain , Dogs , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Haplorhini , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Purines/pharmacology , Rats , Reperfusion Injury/drug therapy , Structure-Activity Relationship
9.
RSC Med Chem ; 13(3): 343-349, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35434625

ABSTRACT

Disruption of the HBV viral life cycle with small molecules that prevent the encapsidation of pregenomic RNA and viral polymerase through binding to HBV core protein is a clinically validated approach to inhibiting HBV viral replication. Herein we report the further optimisation of clinical candidate AB-506 through core modification with a focus on increasing oral exposure and oral half-life. Maintenance of high levels of anti-HBV cellular potency in conjunction with improvements in pharmacokinetic properties led to multi-log10 reductions in serum HBV DNA following low, once-daily oral dosing for key analogues in a preclinical animal model of HBV replication.

10.
Antiviral Res ; 197: 105211, 2022 01.
Article in English | MEDLINE | ID: mdl-34826506

ABSTRACT

AB-506, a small-molecule inhibitor targeting the HBV core protein, inhibits viral replication in vitro (HepAD38 cells: EC50 of 0.077 µM, CC50 > 25 µM) and in vivo (HBV mouse model: ∼3.0 log10 reductions in serum HBV DNA compared to the vehicle control). Binding of AB-506 to HBV core protein accelerates capsid assembly and inhibits HBV pgRNA encapsidation. Furthermore, AB-506 blocks cccDNA establishment in HBV-infected HepG2-hNTCP-C4 cells and primary human hepatocytes, leading to inhibition of viral RNA, HBsAg, and HBeAg production (EC50 from 0.64 µM to 1.92 µM). AB-506 demonstrated activity across HBV genotypes A-H and maintains antiviral activity against nucleos(t)ide analog-resistant variants in vitro. Evaluation of AB-506 against a panel of core variants showed that T33N/Q substitutions results in >200-fold increase in EC50 values, while L30F, L37Q, and I105T substitutions showed an 8 to 20-fold increase in EC50 values in comparison to the wild-type. In vitro combinations of AB-506 with NAs or an RNAi agent were additive to moderately synergistic. AB-506 exhibits good oral bioavailability, systemic exposure, and higher liver to plasma ratios in rodents, a pharmacokinetic profile supporting clinical development for chronic hepatitis B.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Viral Core Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacokinetics , Cells, Cultured , Drug Evaluation, Preclinical , Female , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/virology , Humans , Mice , Rats , Virus Assembly/drug effects
11.
Arthritis Rheum ; 62(8): 2283-93, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20506481

ABSTRACT

OBJECTIVE: All gamma-chain cytokines signal through JAK-3 and JAK-1 acting in tandem. We undertook this study to determine whether the JAK-3 selective inhibitor WYE-151650 would be sufficient to disrupt cytokine signaling and to ameliorate autoimmune disease pathology without inhibiting other pathways mediated by JAK-1, JAK-2, and Tyk-2. METHODS: JAK-3 kinase selective compounds were characterized by kinase assay and JAK-3-dependent (interleukin-2 [IL-2]) and -independent (IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF]) cell-based assays measuring proliferation or STAT phosphorylation. In vivo, off-target signaling was measured by IL-22- and erythropoietin (EPO)-mediated models, while on-target signaling was measured by IL-2-mediated signaling. Efficacy of JAK-3 inhibitors was determined using delayed-type hypersensitivity (DTH) and collagen-induced arthritis (CIA) models in mice. RESULTS: In vitro, WYE-151650 potently suppressed IL-2-induced STAT-5 phosphorylation and cell proliferation, while exhibiting 10-29-fold less activity against JAK-3-independent IL-6- or GM-CSF-induced STAT phosphorylation. Ex vivo, WYE-151650 suppressed IL-2-induced STAT phosphorylation, but not IL-6-induced STAT phosphorylation, as measured in whole blood. In vivo, WYE-151650 inhibited JAK-3-mediated IL-2-induced interferon-gamma production and decreased the natural killer cell population in mice, while not affecting IL-22-induced serum amyloid A production or EPO-induced reticulocytosis. WYE-151650 was efficacious in mouse DTH and CIA models. CONCLUSION: In vitro, ex vivo, and in vivo assays demonstrate that WYE-151650 is efficacious in mouse CIA despite JAK-3 selectivity. These data question the need to broadly inhibit JAK-1-, JAK-2-, or Tyk-2-dependent cytokine pathways for efficacy.


Subject(s)
Arthritis, Experimental/drug therapy , Janus Kinase 3/antagonists & inhibitors , Analysis of Variance , Animals , Arthritis, Experimental/metabolism , Blotting, Western , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Flow Cytometry , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Janus Kinase 3/metabolism , Mice , Mice, Inbred BALB C , Phosphorylation/drug effects , Signal Transduction/drug effects
12.
Nat Commun ; 12(1): 1222, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33619272

ABSTRACT

Programmed death-ligand 1 is a glycoprotein expressed on antigen presenting cells, hepatocytes, and tumors which upon interaction with programmed death-1, results in inhibition of antigen-specific T cell responses. Here, we report a mechanism of inhibiting programmed death-ligand 1 through small molecule-induced dimerization and internalization. This represents a mechanism of checkpoint inhibition, which differentiates from anti-programmed death-ligand 1 antibodies which function through molecular disruption of the programmed death 1 interaction. Testing of programmed death ligand 1 small molecule inhibition in a humanized mouse model of colorectal cancer results in a significant reduction in tumor size and promotes T cell proliferation. In addition, antigen-specific T and B cell responses from patients with chronic hepatitis B infection are significantly elevated upon programmed death ligand 1 small molecule inhibitor treatment. Taken together, these data identify a mechanism of small molecule-induced programmed death ligand 1 internalization with potential therapeutic implications in oncology and chronic viral infections.


Subject(s)
B7-H1 Antigen/metabolism , Endocytosis , Immune Checkpoint Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , CHO Cells , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Cricetulus , Disease Models, Animal , Female , Hepatitis B virus/drug effects , Humans , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/metabolism , Protein Multimerization/drug effects , Small Molecule Libraries/chemistry
13.
Bioorg Med Chem Lett ; 20(18): 5394-7, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20719508

ABSTRACT

The discovery, synthesis, and preliminary structure-activity relationship (SAR) of a novel class of vasopressin V3 (V1b) receptor antagonists is described. Compound 1, identified by high throughput screening of a diverse, three million-member compound collection, prepared using ECLiPS technology, had good activity in a V3 binding assay (IC50=0.20 microM), but less than desirable physicochemical properties. Optimization of compound 1 yielded potent analogs 19 (IC50=0.31 microM) and 24 (IC50=0.12 microM) with improved drug-like characteristics.


Subject(s)
Acetamides/chemistry , Acetamides/pharmacology , Antidiuretic Hormone Receptor Antagonists , Quinazolines/chemistry , Quinazolines/pharmacology , Receptors, Vasopressin/metabolism , Acetamides/chemical synthesis , Animals , Depressive Disorder/drug therapy , Humans , Quinazolines/chemical synthesis , Rats , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 20(22): 6845-9, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20869242

ABSTRACT

A novel series of adenosine A(2A) receptor antagonists was identified by high-throughput screening of an encoded combinatorial compound collection. The initial hits were optimized for A(2A) binding affinity, A(1) selectivity, and in vitro microsomal stability generating orally available 2-aminoimidazo[4,5-b]pyridine-based A(2A) antagonist leads.


Subject(s)
Pyrimidines/pharmacology , Receptor, Adenosine A2A/drug effects , Drug Discovery , Humans , Hydrogen Bonding , Microsomes/drug effects , Receptor, Adenosine A2A/chemistry
15.
Bioorg Med Chem Lett ; 19(2): 378-81, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19059776

ABSTRACT

The discovery and synthesis of a series of 2-amino-5-benzoyl-4-(2-furyl)thiazoles as adenosine A(2A) receptor antagonists from a small-molecule combinatorial library using a high-throughput radioligand-binding assay is described. Antagonists were further characterized in the A(2A) binding assay and an A(1) selectivity assay. Selected examples exhibited excellent affinity for A(2A) and good selectivity versus the A(1) receptor.


Subject(s)
Purinergic P1 Receptor Antagonists , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Alkylation , Cell Line , Combinatorial Chemistry Techniques , Drug Discovery , Humans , Radioligand Assay , Receptors, Purinergic P1/metabolism , Thiazoles/metabolism
16.
Bioorg Med Chem Lett ; 19(5): 1399-402, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19181527

ABSTRACT

A series of trisubstituted purinones was synthesized and evaluated as A(2A) receptor antagonists. The A(2A) structure-activity relationships at the three substituted positions were studied and selectivity against the A(1) receptor was investigated. One antagonist 12o exhibits a K(i) of 9nM in an A(2A) binding assay, a K(b) of 18nM in an A(2A) cAMP functional assay, and is 220-fold selective over the A(1) receptor.


Subject(s)
Adenosine A2 Receptor Antagonists , Purinones/chemical synthesis , Animals , Humans , Protein Binding/drug effects , Protein Binding/physiology , Purinones/metabolism , Purinones/pharmacology , Rats , Receptor, Adenosine A2A/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 19(7): 2048-52, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19249203

ABSTRACT

We identified a series of structurally novel SCD (Delta9 desaturase) inhibitors via high-throughput screening and follow-up SAR studies. Modification of the central bicyclic scaffold has proven key to our potency optimization effort. The most potent analog (8g) had IC(50) value of 50 pM in a HEPG2 SCD assay and has been shown to be metabolically stable and selective against Delta5 and Delta6 desaturases.


Subject(s)
Enzyme Inhibitors/chemistry , Pteridines/chemistry , Quinoxalines/chemistry , Stearoyl-CoA Desaturase/antagonists & inhibitors , Animals , Cell Line , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Microsomes/metabolism , Pteridines/metabolism , Pteridines/pharmacology , Quinoxalines/pharmacology , Rats , Stearoyl-CoA Desaturase/metabolism , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 19(11): 3050-3, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19394219

ABSTRACT

We discovered a structurally novel SCD (Delta9 desaturase) inhibitor 4a (CVT-11,563) that has 119 nM potency in a human cell-based (HEPG2) SCD assay and selectivity against Delta5 and Delta6 desaturases. This compound has 90% oral bioavailability (rat) and excellent plasma exposure (dAUC 935 ng h/mL). Additionally, 4a shows moderately selective liver distribution (three times vs plasma and adipose tissue) and relatively low brain penetration. In a five-day study (high sucrose diet, rat) compound 4a significantly reduced SCD activity as determined by GC analysis of fatty acid composition in plasma and liver. We describe the discovery of 4a from HTS hit 1 followed by scaffold replacement and SAR studies focused on DMPK properties.


Subject(s)
Benzyl Compounds/chemistry , Enzyme Inhibitors/chemistry , Pyrimidinones/chemistry , Stearoyl-CoA Desaturase/antagonists & inhibitors , Administration, Oral , Animals , Benzyl Compounds/chemical synthesis , Benzyl Compounds/pharmacokinetics , Cell Line, Tumor , Dietary Carbohydrates/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Microsomes, Liver/metabolism , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacokinetics , Rats , Rats, Sprague-Dawley , Stearoyl-CoA Desaturase/metabolism , Tissue Distribution
19.
Bioorg Med Chem Lett ; 19(1): 119-22, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19014884

ABSTRACT

The synthesis and identification of sulfonamido-aryl ethers as potent bradykinin B1 receptor antagonists from a approximately 60,000 member encoded combinatorial library are reported. Two distinct series of compounds exhibiting different structure-activity relationships were identified in a bradykinin B1 whole-cell receptor-binding assay. Specific examples exhibit K(i) values of approximately 10nM.


Subject(s)
Bradykinin B1 Receptor Antagonists , Ethers/chemical synthesis , Sulfonamides/chemical synthesis , Animals , Cell Line , Combinatorial Chemistry Techniques , Humans , Small Molecule Libraries , Structure-Activity Relationship , Sulfonamides/pharmacology
20.
Bioorg Med Chem Lett ; 19(23): 6788-92, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19836234

ABSTRACT

A novel class of Janus tyrosine kinase 3 (JAK3) inhibitors based on a 2-benzimidazoylpurinone core structure is described. Through substitution of the benzimidazoyl moiety and optimization of the N-9 substituent of the purinone, compound 24 was identified incorporating a chroman-based functional group. Compound 24 shows excellent kinase activity, good oral bioavailability and demonstrates efficacy in an acute mechanistic mouse model through inhibition of interleukin-2 (IL-2) induced interferon-gamma (INF-gamma) production.


Subject(s)
Benzimidazoles/pharmacology , Enzyme Inhibitors/pharmacology , Janus Kinase 3/antagonists & inhibitors , Purines/pharmacology , Animals , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Interferon-gamma/biosynthesis , Interleukin-2/antagonists & inhibitors , Mice , Models, Animal , Models, Molecular , Molecular Structure , Purines/chemical synthesis , Purines/chemistry , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL