Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
NPJ Vaccines ; 9(1): 104, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858418

ABSTRACT

It is recommended that the adjuvant Montanide ISA 720 VG be used at a concentration of 70% v/v. At this concentration, Montanide causes at the site of immunization a local granuloma that can last for several weeks. To determine the safety and protective efficacy of a Chlamydia muridarum MOMP vaccine, formulated with CpG-1826 and four different concentrations of Montanide (70%, 50%, 30% and 10%), BALB/c (H-2d) female mice were immunized twice intramuscularly. Local reactogenicity was significant for vaccines formulated with 70% or 50% Montanide but not for those inoculated with 30% or 10% Montanide. Robust humoral and cell mediated memory immune responses were elicited by the 70%, 50% and 30% Montanide formulations. Mice were challenged intranasally with 104 C. muridarum inclusion forming units (IFU). Based on changes in body weight, lungs's weight and number of IFU recovered, mice vaccinated with the 70%, 50% and 30% Montanide formulations were significantly protected, but not mice receiving 10% Montanide. To conclude, we recommend the 30% Montanide concentration to be tested in humans and animal models to determine its safety and efficacy, in comparison to the 70% Montanide concentration currently used. The 30% Montanide formulation could significantly facilitate licensing of this adjuvant for human use.

2.
Expert Rev Neurother ; 24(7): 661-680, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38814860

ABSTRACT

INTRODUCTION: Infantile epileptic spasms syndrome (IESS) is a common developmental and epileptic encephalopathy with poor long-term outcomes. A substantial proportion of patients with IESS have a potentially surgically remediable etiology. Despite this, epilepsy surgery is underutilized in this patient group. Some surgically remediable etiologies, such as focal cortical dysplasia and malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE), are under-diagnosed in infants and young children. Even when a surgically remediable etiology is recognised, for example, tuberous sclerosis or focal encephalomalacia, epilepsy surgery may be delayed or not considered due to diffuse EEG changes, unclear surgical boundaries, or concerns about operating in this age group. AREAS COVERED: In this review, the authors discuss the common surgically remediable etiologies of IESS, their clinical and EEG features, and the imaging techniques that can aid in their diagnosis. They then describe the surgical approaches used in this patient group, and the beneficial impact that early epilepsy surgery can have on developing brain networks. EXPERT OPINION: Epilepsy surgery remains underutilized even when a potentially surgically remediable cause is recognized. Overcoming the barriers that result in under-recognition of surgical candidates and underutilization of epilepsy surgery in IESS will improve long-term seizure and developmental outcomes.


Subject(s)
Electroencephalography , Spasms, Infantile , Humans , Spasms, Infantile/surgery , Spasms, Infantile/diagnosis , Infant , Malformations of Cortical Development/surgery , Malformations of Cortical Development/complications
3.
Neurol Genet ; 10(2): e200135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38496361

ABSTRACT

Background and Objectives: Pathogenic variants in PI3K-AKT-mTOR pathway and GATOR1 complex genes resulting in hyperactivation of mechanistic target of rapamycin (mTOR) complex 1 are a major cause of drug-resistant epilepsy and focal cortical malformations (FCM). Resective neurosurgery is often required to achieve seizure control in patients with mTORopathies due to lack of effectiveness of nonsurgical therapies, including antiseizure medication and mTOR inhibitors. Elevated hyperpolarization-activated cyclic nucleotide-gated potassium channel isoform 4 (HCN4) has been proposed as a key marker in some mTOR-related brain malformations. This study aimed to investigate HCN4 as a biomarker in the brain across the genetic spectrum of mTORopathies in humans. Methods: Our study investigated the relative steady-state levels and cellular localization of HCN4 in resected human brain tissue from 18 individuals with mTORopathies (3 individuals with tuberous sclerosis complex (TSC) due to TSC2 variants, 5 individuals with focal cortical dysplasia type IIA (FCD IIA) due to genetic variants in MTOR, AKT3, and PIK3CA, and 10 individuals with FCD IIB due to variants in TSC1, MTOR, RHEB, DEPDC5, or NPRL3). Results: Elevated HCN4 was observed to be highly restricted to abnormal cell types (dysmorphic neurons and balloon cells) in brain tissue from all mTORopathy tissues (p < 0.0001) compared with those in controls, regardless of genetic cause or variant allele frequency. Elevated HCN4 was not observed in controls or individuals with non-mTOR-related focal epilepsy due to pathogenic variants in ATP1A3, SLC35A2, or FGFR1. Discussion: HCN4 provides a biomarker for the genetic spectrum of mTORopathies and may present a potential therapeutic target for seizure control in mTOR-related epilepsy.

4.
bioRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38895407

ABSTRACT

Chlamydia trachomatis is the most prevalent bacterial sexually transmitted pathogen worldwide. Since chlamydial infection is largely asymptomatic with the potential for serious complications, a preventative vaccine is likely the most viable long-term answer to this public health threat. Cell-free protein synthesis (CFPS) utilizes the cellular protein manufacturing machinery decoupled from the requirement for maintaining cellular viability, offering the potential for flexible, rapid, and de-centralized production of recombinant protein vaccine antigens. Here, we use CFPS to produce the putative chlamydial type three secretion system (T3SS) needle-tip protein, CT584, for use as a vaccine antigen in mouse models. High-speed atomic force microscopy (HS-AFM) imaging and computer simulations confirm that CFPS-produced CT584 retains a native-like structure prior to immunization. Female mice were primed with CT584 adjuvanted with CpG-1826 intranasally (i.n.) or CpG-1826 + Montanide ISA 720 intramuscularly (i.m.), followed four-weeks later by an i.m. boost before respiratory challenge with 104 inclusion forming units (IFU) of Chlamydia muridarum. Immunization with CT584 generated robust antibody responses but weak cell mediated immunity and failed to protect against i.n. challenge as demonstrated by body weight loss, increased lungs' weights and the presence of high numbers of IFUs in the lungs. While CT584 alone may not be the ideal vaccine candidate, the speed and flexibility with which CFPS can be used to produce other potential chlamydial antigens makes it an attractive technique for antigen production.

5.
PLoS One ; 19(6): e0304525, 2024.
Article in English | MEDLINE | ID: mdl-38861498

ABSTRACT

The polymorphic membrane proteins (Pmps) are a family of autotransporters that play an important role in infection, adhesion and immunity in Chlamydia trachomatis. Here we show that the characteristic GGA(I,L,V) and FxxN tetrapeptide repeats fit into a larger repeat sequence, which correspond to the coils of a large beta-helical domain in high quality structure predictions. Analysis of the protein using structure prediction algorithms provided novel insight to the chlamydial Pmp family of proteins. While the tetrapeptide motifs themselves are predicted to play a structural role in folding and close stacking of the beta-helical backbone of the passenger domain, we found many of the interesting features of Pmps are localized to the side loops jutting out from the beta helix including protease cleavage, host cell adhesion, and B-cell epitopes; while T-cell epitopes are predominantly found in the beta-helix itself. This analysis more accurately defines the Pmp family of Chlamydia and may better inform rational vaccine design and functional studies.


Subject(s)
Chlamydia trachomatis , Chlamydia trachomatis/immunology , Membrane Proteins/chemistry , Membrane Proteins/immunology , Membrane Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Humans , Epitopes/immunology , Epitopes/chemistry , Models, Molecular , Protein Structure, Secondary
6.
Res Sq ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38168233

ABSTRACT

To determine the safety and protective efficacy of a C. muridarum MOMP vaccine, formulated with CpG-1826 and four different concentrations of Montanide ISA 720 VG (70%, 50%, 30% and 10%), BALB/c mice were immunized twice intramuscularly. Local reactogenicity was significant for vaccines formulated with 70% and 50% Montanide but not in mice receiving 30% and 10% Montanide. Robust humoral and cell mediated memory immune responses were elicited by the 70%, 50% and 30% Montanide formulations. Mice were challenged intranasally with C. muridarum and, at day 10 post-challenge, mice were euthanized. Based on changes in body weight, lung's weight and number of IFU recovered, mice vaccinated with the 70%, 50% and 30% Montanide formulations were significantly protected, but not mice receiving 10% Montanide. To conclude, we recommend the 30% Montanide concentration to be tested in humans and animal models to determine its safety and efficacy, in comparison to the 70% Montanide concentration currently used. The 30% Montanide formulation will significantly facilitate licensing for human use.

7.
Article in English | MEDLINE | ID: mdl-38741937

ABSTRACT

Introduction: Missions beyond low Earth orbit (LEO) will expose astronauts to ionizing radiation (IR) in the form of solar energetic particles (SEP) and galactic cosmic rays (GCR) including high atomic number and energy (HZE) nuclei. The gastrointestinal (GI) system is documented to be highly radiosensitive with even relatively low dose IR exposures capable of inducing mucosal lesions and disrupting epithelial barrier function. IR is also an established risk factor for colorectal cancer (CRC) with several studies examining long-term GI effects of SEP/GCR exposure using tumor-prone APC mouse models. Studies of acute short-term effects of modeled space radiation exposures in wildtype mouse models are more limited and necessary to better define charged particle-induced GI pathologies and test novel medical countermeasures (MCMs) to promote astronaut safety. Methods: In this study, we performed ground-based studies where male and female C57BL/6J mice were exposed to γ-rays, 50 MeV protons, or 1 GeV/n Fe-56 ions at the NASA Space Radiation Laboratory (NSRL) with histology and immunohistochemistry endpoints measured in the first 24 h post-irradiation to define immediate SEP/GCR-induced GI alterations. Results: Our data show that unlike matched γ-ray controls, acute exposures to protons and iron ions disrupts intestinal function and induces mucosal lesions, vascular congestion, epithelial barrier breakdown, and marked enlargement of mucosa-associated lymphoid tissue. We also measured kinetics of DNA double-strand break (DSB) repair using gamma-H2AX- specific antibodies and apoptosis via TUNEL labeling, noting the induction and disappearance of extranuclear cytoplasmic DNA marked by gamma-H2AX only in the charged particle-irradiated samples. We show that 18 h pre-treatment with curcumin-loaded nanolipoprotein particles (cNLPs) delivered via IV injection reduces DSB-associated foci levels and apoptosis and restore crypt villi lengths. Discussion: These data improve our understanding of physiological alterations in the GI tract immediately following exposures to modeled space radiations and demonstrates effectiveness of a promising space radiation MCM.

SELECTION OF CITATIONS
SEARCH DETAIL