Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 24(3): 385-386, 2023 03.
Article in English | MEDLINE | ID: mdl-36829070
2.
Immunity ; 54(10): 2188-2190, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644554

ABSTRACT

The concept of functional specialization is fundamental to the immune system but has not been previously observed in human Langerhans cells. In this issue of Immunity, Liu et al. use single-cell approaches to define two distinct epidermal subsets converging on a common activation and migration pathway.


Subject(s)
Langerhans Cells , Skin , Epidermis , Humans
3.
Immunity ; 53(2): 353-370.e8, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32735845

ABSTRACT

The formation of mammalian dendritic cells (DCs) is controlled by multiple hematopoietic transcription factors, including IRF8. Loss of IRF8 exerts a differential effect on DC subsets, including plasmacytoid DCs (pDCs) and the classical DC lineages cDC1 and cDC2. In humans, cDC2-related subsets have been described including AXL+SIGLEC6+ pre-DC, DC2 and DC3. The origin of this heterogeneity is unknown. Using high-dimensional analysis, in vitro differentiation, and an allelic series of human IRF8 deficiency, we demonstrated that cDC2 (CD1c+DC) heterogeneity originates from two distinct pathways of development. The lymphoid-primed IRF8hi pathway, marked by CD123 and BTLA, carried pDC, cDC1, and DC2 trajectories, while the common myeloid IRF8lo pathway, expressing SIRPA, formed DC3s and monocytes. We traced distinct trajectories through the granulocyte-macrophage progenitor (GMP) compartment showing that AXL+SIGLEC6+ pre-DCs mapped exclusively to the DC2 pathway. In keeping with their lower requirement for IRF8, DC3s expand to replace DC2s in human partial IRF8 deficiency.


Subject(s)
Antigens, CD34/metabolism , Dendritic Cells/cytology , Hematopoiesis/physiology , Interferon Regulatory Factors/metabolism , Animals , Antigens, CD1/metabolism , Cell Line , Cell Lineage/immunology , Dendritic Cells/immunology , Glycoproteins/metabolism , Hematopoietic Stem Cells/cytology , Humans , Interleukin-3 Receptor alpha Subunit/metabolism , Lipopolysaccharide Receptors/metabolism , Mice , Receptors, Immunologic/metabolism
5.
Immunity ; 49(2): 326-341.e7, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30054204

ABSTRACT

The maintenance of appropriate arterial tone is critically important for normal physiological arterial function. However, the cellular and molecular mechanisms remain poorly defined. Here, we have shown that in the mouse aorta, resident macrophages prevented arterial stiffness and collagen deposition in the steady state. Using phenotyping, transcriptional profiling, and targeted deletion of Csf1r, we have demonstrated that these macrophages-which are a feature of blood vessels invested with smooth muscle cells (SMCs) in both mouse and human tissues-expressed the hyaluronan (HA) receptor LYVE-l. Furthermore, we have shown they possessed the unique ability to modulate collagen expression in SMCs by matrix metalloproteinase MMP-9-dependent proteolysis through engagement of LYVE-1 with the HA pericellular matrix of SMCs. Our study has unveiled a hitherto unknown homeostatic contribution of arterial LYVE-1+ macrophages through the control of collagen production by SMCs and has identified a function of LYVE-1 in leukocytes.


Subject(s)
Collagen/metabolism , Glycoproteins/metabolism , Hyaluronan Receptors/metabolism , Macrophages/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Vascular Stiffness/physiology , Animals , Aorta/physiology , Female , Glycoproteins/genetics , Humans , Hyaluronic Acid/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Membrane Transport Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
6.
Blood ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38643511

ABSTRACT

Selecting the most suitable alternative donor becomes challenging in severe aplastic anemia (SAA) when a matched sibling donor (MSD) is unavailable. We compared outcomes in SAA patients undergoing SCT from matched unrelated donors (MUD, n=1106), mismatched unrelated donors (MMUD, n=340), and haploidentical donors (Haplo, n=206) registered in the EBMT database (2012-2021). For Haplo-SCT, only those receiving post-transplant cyclophosphamide (PT-Cy) for graft-versus-host disease (GVHD) prophylaxis were included. Median age was 20 years, and the median time from diagnosis to transplantation 8.7 months. Compared to MUD, MMUD (HR, 2.93; 95% CI, 1.52-5.6) and Haplo (HR, 5.15; 95% CI, 2.5-10.58) showed significantly higher risks of primary graft failure. MUD had lower rates of acute GVHD compared to MMUD and Haplo, grade II-IV (13%, 22%, and 19%, respectively, p<0.001) and III-IV (5%, 9%, and 7%, respectively, p=0.028). The 3-year non-relapse mortality was 14% for MUD, 19% for MMUD, and 27% for Haplo (p<0.001), while overall survival (OS) and GVHD and relapse-free survival (GRFS) were 81% and 73% for MUD, 74% and 65% for MMUD, and 63% and 54% for Haplo, respectively (p<0.001). In addition to donor type, multivariable analysis identified other factors like patient age, performance status, and interval between diagnosis and transplant associated with GRFS. For SAA patients lacking an MSD, our findings support MUD transplantation as the preferable alternative donor. However, selecting between a MMUD or Haplo donor remains uncertain and requires further exploration.

7.
Blood ; 141(19): 2343-2358, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36758207

ABSTRACT

Classic Hodgkin lymphoma (cHL) has a rich immune infiltrate, which is an intrinsic component of the neoplastic process. Malignant Hodgkin Reed-Sternberg cells (HRSCs) create an immunosuppressive microenvironment by the expression of regulatory molecules, preventing T-cell activation. It has also been demonstrated that mononuclear phagocytes (MNPs) in the vicinity of HRSCs express similar regulatory mechanisms in parallel, and their presence in tissue is associated with inferior patient outcomes. MNPs in cHL have hitherto been identified by a small number of canonical markers and are usually described as tumor-associated macrophages. The organization of MNP networks and interactions with HRSCs remains unexplored at high resolution. Here, we defined the global immune-cell composition of cHL and nonlymphoma lymph nodes, integrating data across single-cell RNA sequencing, spatial transcriptomics, and multiplexed immunofluorescence. We observed that MNPs comprise multiple subsets of monocytes, macrophages, and dendritic cells (DCs). Classical monocytes, macrophages and conventional DC2s were enriched in the vicinity of HRSCs, but plasmacytoid DCs and activated DCs were excluded. Unexpectedly, cDCs and monocytes expressed immunoregulatory checkpoints PD-L1, TIM-3, and the tryptophan-catabolizing protein IDO, at the same level as macrophages. Expression of these molecules increased with age. We also found that classical monocytes are important signaling hubs, potentially controlling the retention of cDC2 and ThExh via CCR1-, CCR4-, CCR5-, and CXCR3-dependent signaling. Enrichment of the cDC2-monocyte-macrophage network in diagnostic biopsies is associated with early treatment failure. These results reveal unanticipated complexity and spatial polarization within the MNP compartment, further demonstrating their potential roles in immune evasion by cHL.


Subject(s)
Hodgkin Disease , Humans , Hodgkin Disease/diagnosis , Reed-Sternberg Cells/metabolism , Macrophages/metabolism , Monocytes/metabolism , Immunosuppressive Agents , Tumor Microenvironment
8.
Cancer ; 130(14): 2416-2439, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38687639

ABSTRACT

Langerhans cell histiocytosis (LCH) is a myeloid neoplastic disorder characterized by lesions with CD1a-positive/Langerin (CD207)-positive histiocytes and inflammatory infiltrate that can cause local tissue damage and systemic inflammation. Clinical presentations range from single lesions with minimal impact to life-threatening disseminated disease. Therapy for systemic LCH has been established through serial trials empirically testing different chemotherapy agents and durations of therapy. However, fewer than 50% of patients who have disseminated disease are cured with the current standard-of-care vinblastine/prednisone/(mercaptopurine), and treatment failure is associated with long-term morbidity, including the risk of LCH-associated neurodegeneration. Historically, the nature of LCH-whether a reactive condition versus a neoplastic/malignant condition-was uncertain. Over the past 15 years, seminal discoveries have broadly defined LCH pathogenesis; specifically, activating mitogen-activated protein kinase pathway mutations (most frequently, BRAFV600E) in myeloid precursors drive lesion formation. LCH therefore is a clonal neoplastic disorder, although secondary inflammatory features contribute to the disease. These paradigm-changing insights offer a promise of rational cures for patients based on individual mutations, clonal reservoirs, and extent of disease. However, the pace of clinical trial development behind lags the kinetics of translational discovery. In this review, the authors discuss the current understanding of LCH biology, clinical characteristics, therapeutic strategies, and opportunities to improve outcomes for every patient through coordinated agent prioritization and clinical trial efforts.


Subject(s)
Histiocytosis, Langerhans-Cell , Humans , Histiocytosis, Langerhans-Cell/drug therapy
9.
Blood ; 139(17): 2601-2621, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35271698

ABSTRACT

Langerhans cell histiocytosis (LCH) can affect children and adults with a wide variety of clinical manifestations, including unifocal, single-system multifocal, single-system pulmonary (smoking-associated), or multisystem disease. The existing paradigms in the management of LCH in adults are mostly derived from the pediatric literature. Over the last decade, the discovery of clonality and MAPK-ERK pathway mutations in most cases led to the recognition of LCH as a hematopoietic neoplasm, opening the doors for treatment with targeted therapies. These advances have necessitated an update of the existing recommendations for the diagnosis and treatment of LCH in adults. This document presents consensus recommendations that resulted from the discussions at the annual Histiocyte Society meeting in 2019, encompassing clinical features, classification, diagnostic criteria, treatment algorithm, and response assessment for adults with LCH. The recommendations favor the use of 18F-Fluorodeoxyglucose positron emission tomography-based imaging for staging and response assessment in the majority of cases. Most adults with unifocal disease may be cured by local therapies, while the first-line treatment for single-system pulmonary LCH remains smoking cessation. Among patients not amenable or unresponsive to these treatments and/or have multifocal and multisystem disease, systemic treatments are recommended. Preferred systemic treatments in adults with LCH include cladribine or cytarabine, with the emerging role of targeted (BRAF and MEK inhibitor) therapies. Despite documented responses to treatments, many patients struggle with a high symptom burden from pain, fatigue, and mood disorders that should be acknowledged and managed appropriately.


Subject(s)
Histiocytosis, Langerhans-Cell , Adult , Child , Cladribine/therapeutic use , Consensus , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/therapy , Humans , MAP Kinase Signaling System , Mutation
10.
Blood ; 139(2): 256-280, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34727172

ABSTRACT

ALK-positive histiocytosis is a rare subtype of histiocytic neoplasm first described in 2008 in 3 infants with multisystemic disease involving the liver and hematopoietic system. This entity has subsequently been documented in case reports and series to occupy a wider clinicopathologic spectrum with recurrent KIF5B-ALK fusions. The full clinicopathologic and molecular spectra of ALK-positive histiocytosis remain, however, poorly characterized. Here, we describe the largest study of ALK-positive histiocytosis to date, with detailed clinicopathologic data of 39 cases, including 37 cases with confirmed ALK rearrangements. The clinical spectrum comprised distinct clinical phenotypic groups: infants with multisystemic disease with liver and hematopoietic involvement, as originally described (Group 1A: 6/39), other patients with multisystemic disease (Group 1B: 10/39), and patients with single-system disease (Group 2: 23/39). Nineteen patients of the entire cohort (49%) had neurologic involvement (7 and 12 from Groups 1B and 2, respectively). Histology included classic xanthogranuloma features in almost one-third of cases, whereas the majority displayed a more densely cellular, monomorphic appearance without lipidized histiocytes but sometimes more spindled or epithelioid morphology. Neoplastic histiocytes were positive for macrophage markers and often conferred strong expression of phosphorylated extracellular signal-regulated kinase, confirming MAPK pathway activation. KIF5B-ALK fusions were detected in 27 patients, whereas CLTC-ALK, TPM3-ALK, TFG-ALK, EML4-ALK, and DCTN1-ALK fusions were identified in single cases. Robust and durable responses were observed in 11/11 patients treated with ALK inhibition, 10 with neurologic involvement. This study presents the existing clinicopathologic and molecular landscape of ALK-positive histiocytosis and provides guidance for the clinical management of this emerging histiocytic entity.


Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/analysis , Histiocytic Disorders, Malignant/drug therapy , Histiocytic Disorders, Malignant/pathology , Protein Kinase Inhibitors/therapeutic use , Adolescent , Adult , Anaplastic Lymphoma Kinase/genetics , Child , Child, Preschool , Female , Histiocytic Disorders, Malignant/complications , Histiocytic Disorders, Malignant/genetics , Humans , Infant , Male , Nervous System Diseases/etiology , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Oncogene Proteins, Fusion/analysis , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/genetics , Retrospective Studies , Young Adult
11.
Blood ; 140(17): 1875-1890, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35839448

ABSTRACT

The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.


Subject(s)
Myeloid-Lymphoid Leukemia Protein , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Epigenesis, Genetic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Genes, Regulator , Chromatin
12.
Br J Haematol ; 203(3): 347-348, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37592718

ABSTRACT

BRAF and MEK inhibitors have revolutionised the treatment of patients with high-risk histiocytic neoplasms but does a complete response mean that treatment can be withdrawn? Commentary on: Reiner et al. Outcomes after interruption of targeted therapy in patients with histiocytic neoplasms. Br J Haematol 2023;203:389-394.


Subject(s)
Hematologic Neoplasms , Skin Neoplasms , Humans , MAP Kinase Signaling System , Protein Kinase Inhibitors/therapeutic use , Hematologic Neoplasms/therapy , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
13.
J Autoimmun ; 136: 103024, 2023 04.
Article in English | MEDLINE | ID: mdl-37001437

ABSTRACT

Hematopoietic stem cell transplant (HSCT) recipients may be at high risk of mortality from coronavirus disease 2019 (COVID-19). However, specific data on COVID-19 after treatment with HSCT in patients affected by autoimmune diseases (ADs) are still lacking. In this multicenter observational study of the European Society for Blood and Marrow Transplantation (EBMT), clinical data on COVID-19 in 11 patients affected by severe ADs treated with HSCT (n = 3 allogeneic transplant; n = 8 autologous transplant) are reported. All patients were symptomatic during the initial phase of the SARS-CoV-2 infection. At screening, 5 patients reported upper respiratory symptoms, 3 patients had cough without oxygen requirement, and 6 patients exhibited extra-pulmonary symptoms. Four cases developed a lower respiratory tract disease (LRTD). Hospitalization was required in 6 cases, without necessity of intensive care unit (ICU) admission and/or ventilation/supplemental oxygen. Different interventions were adopted: remdesivir (n = 1), nirmatrelvir/ritonavir (n = 1), sotrovimab (n = 1), immunoglobulins (n = 1). At last follow-up, all patients are alive and had resolution of the infection. The current analysis describing the mild-moderate course of COVID-19 in transplant recipients affected by ADs, similar to the course observed in ADs under standard treatments, provides useful information to support the delivery of HSCT programs in this field. Vaccination and new treatments available for SARS-CoV-2 may be useful to further minimize the risk of infection.


Subject(s)
Autoimmune Diseases , COVID-19 , Hematopoietic Stem Cell Transplantation , Humans , SARS-CoV-2 , RNA, Viral , Transplant Recipients , Hematopoietic Stem Cell Transplantation/adverse effects , Autoimmune Diseases/epidemiology , Autoimmune Diseases/therapy
14.
Haematologica ; 108(6): 1515-1529, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36727400

ABSTRACT

Germline GATA2 mutations predispose to myeloid malignancies resulting from the progressive acquisition of additional somatic mutations. Here we describe clinical and biological features of 78 GATA2-deficient patients. Hematopoietic stem and progenitor cell phenotypic characterization revealed an exhaustion of myeloid progenitors. Somatic mutations in STAG2, ASXL1 and SETBP1 genes along with cytogenetic abnormalities (monosomy 7, trisomy 8, der(1;7)) occurred frequently in patients with GATA2 germline mutations. Patients were classified into three hematopoietic spectra based on bone marrow cytomorphology. No somatic additional mutations were detected in patients with normal bone marrow (spectrum 0), whereas clonal hematopoiesis mediated by STAG2 mutations was frequent in those with a hypocellular and/or myelodysplastic bone marrow without excess blasts (spectrum 1). Finally, SETBP1, RAS pathway and RUNX1 mutations were predominantly associated with leukemic transformation stage (spectrum 2), highlighting their implications in the transformation process. Specific somatic alterations, potentially providing distinct selective advantages to affected cells, are therefore associated with the clinical/hematological evolution of GATA2 syndrome. Our study not only suggests that somatic genetic profiling will help clinicians in their management of patients, but will also clarify the mechanism of leukemogenesis in the context of germline GATA2 mutations.


Subject(s)
GATA2 Deficiency , Myeloproliferative Disorders , Humans , GATA2 Deficiency/diagnosis , GATA2 Deficiency/genetics , Myeloproliferative Disorders/genetics , Mutation , Bone Marrow , Germ-Line Mutation , GATA2 Transcription Factor/genetics
15.
Haematologica ; 108(4): 1105-1114, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35770529

ABSTRACT

Primary plasma cell leukemia (pPCL) is a rare and challenging malignancy. There are limited data regarding optimum transplant approaches. We therefore undertook a retrospective analysis from 1998-2014 of 751 patients with pPCL undergoing one of four transplant strategies; single autologous transplant (single auto), single allogeneic transplant (allo-first) or a combined tandem approach with an allogeneic transplant following an autologous transplant (auto-allo) or a tandem autologous transplant (auto-auto). To avoid time bias, multiple analytic approaches were employed including Cox models with time-dependent covariates and dynamic prediction by landmarking. Initial comparisons were made between patients undergoing allo-first (n=70) versus auto-first (n=681), regardless of a subsequent second transplant. The allo-first group had a lower relapse rate (45.9%, 95% confidence interval [95% CI]: 33.2-58.6 vs. 68.4%, 64.4-72.4) but higher non-relapse mortality (27%, 95% CI: 15.9-38.1 vs. 7.3%, 5.2-9.4) at 36 months. Patients who underwent allo-first had a remarkably higher risk in the first 100 days for both overall survival and progression-free survival. Patients undergoing auto-allo (n=122) had no increased risk in the short term and a significant benefit in progression-free survival after 100 days compared to those undergoing single auto (hazard ratio [HR]=0.69, 95% CI: 0.52- 0.92; P=0.012). Auto-auto (n=117) was an effective option for patients achieving complete remission prior to their first transplant, whereas in patients who did not achieve complete remission prior to transplantation our modeling predicted that auto-allo was superior. This is the largest retrospective study reporting on transplantation in pPCL to date. We confirm a significant mortality risk within the first 100 days for allo-first and suggest that tandem transplant strategies are superior. Disease status at time of transplant influences outcome. This knowledge may help to guide clinical decisions on transplant strategy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Plasma Cell , Humans , Retrospective Studies , Transplantation, Homologous , Leukemia, Plasma Cell/diagnosis , Leukemia, Plasma Cell/therapy , Disease-Free Survival , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Autologous , Recurrence
16.
Haematologica ; 108(9): 2305-2315, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36951165

ABSTRACT

Survival after allogeneic hematopoietic stem cell transplantation (allo-HSCT) for severe idiopathic aplastic anemia (SAA) has improved in recent years, approaching 75% at 5 years. However, an SAA-adapted composite endpoint, graft-versus-host disease (GvHD) and relapse/rejection-free survival (GRFS), may more accurately assess patient outcomes beyond survival. We analyzed GRFS to identify risk factors and specific causes of GRFS failure. Our retrospective analysis from the Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation included 479 patients with idiopathic SAA who underwent allo-HSCT in two conventional situations: i) upfront allo-HSCT from a matched related donor (MRD) (upfront cohort), and ii) allo-HSCT for relapsed or refractory SAA (rel/ref cohort). Relevant events for GRFS calculation included graft failure, grade 3-4 acute GvHD, extensive chronic GvHD, and death. In the upfront cohort (n=209), 5-year GRFS was 77%. Late allo-HSCT (i.e., >6 months after SAA diagnosis) was the main poor prognostic factor, specifically increasing the risk of death as the cause of GRFS failure (hazard ratio [HR]=4.08; 95% confidence interval [CI]: 1.41-11.83; P=0.010). In the rel/ref cohort (n=270), 5-year GRFS was 61%. Age was the main factor significantly increasing the risk of death (HR=1.04; 95% CI: 1.02-1.06; P<0.001), acute GvHD (HR=1.03; 95% CI: 1.00-1.07; P=0.041), and chronic GvHD (HR=1.04; 95% CI: 1.01-1.08; P=0.032) as the cause of GRFS failure. GRFS after upfront MRD allo-HSCT was very good, notably with early allo-HSCT, confirming that younger patients with an MRD should be transplanted immediately. GRFS was worse in cases of salvage allo-HSCT, most notably in older patients, questioning the utility of allo-HSCT earlier in the disease course.


Subject(s)
Anemia, Aplastic , Bronchiolitis Obliterans Syndrome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Aged , Anemia, Aplastic/complications , Retrospective Studies , Disease-Free Survival , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Transplantation, Homologous/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects
17.
Immunity ; 41(3): 465-477, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25200712

ABSTRACT

Dendritic cells (DCs), monocytes, and macrophages are leukocytes with critical roles in immunity and tolerance. The DC network is evolutionarily conserved; the homologs of human tissue CD141(hi)XCR1⁺ CLEC9A⁺ DCs and CD1c⁺ DCs are murine CD103⁺ DCs and CD64⁻ CD11b⁺ DCs. In addition, human tissues also contain CD14⁺ cells, currently designated as DCs, with an as-yet unknown murine counterpart. Here we have demonstrated that human dermal CD14⁺ cells are a tissue-resident population of monocyte-derived macrophages with a short half-life of <6 days. The decline and reconstitution kinetics of human blood CD14⁺ monocytes and dermal CD14⁺ cells in vivo supported their precursor-progeny relationship. The murine homologs of human dermal CD14⁺ cells are CD11b⁺ CD64⁺ monocyte-derived macrophages. Human and mouse monocytes and macrophages were defined by highly conserved gene transcripts, which were distinct from DCs. The demonstration of monocyte-derived macrophages in the steady state in human tissue supports a conserved organization of human and mouse mononuclear phagocyte system.


Subject(s)
Lipopolysaccharide Receptors/metabolism , Macrophages/immunology , Skin/immunology , Animals , CD11b Antigen/biosynthesis , Cell Differentiation/immunology , Cell Lineage/immunology , Cell Movement/immunology , Cells, Cultured , Dendritic Cells/immunology , Female , Humans , Immunologic Memory/immunology , Mice , Mice, Transgenic , Receptors, IgG/biosynthesis , Skin/cytology , T-Lymphocytes/immunology
18.
Pediatr Blood Cancer ; 70(3): e30159, 2023 03.
Article in English | MEDLINE | ID: mdl-36565277

ABSTRACT

BACKGROUND: National advisory panels (NAPs) have been established for the care of children and young people (CYP) with cancer in the United Kingdom since 2011, with an increase in panel number in recent years. Their practice has not previously been reviewed; therefore, we sought to evaluate the role, practice and impact of six selected NAPs offering expertise in ependymoma, histiocytosis, leukaemia, neuroblastoma, renal tumours and sarcoma. PROCEDURE: This service evaluation used mixed methodology, including review of NAP documentation, semi-structured interviews with the NAP chairs and an analysis of the cases referred for discussion. RESULTS: Total 1110 referrals were analysed. Results demonstrated the significant scope and amount of work undertaken by the NAPs, largely testament to the commitment of the panel members. Specific roles fulfilled have been highlighted, and NAP recommendations have been shown to influence clinical decision-making and be implemented in the majority of cases. Despite widespread good practice, areas to address have been identified; these include clarity regarding NAP membership, consistency in recommendations, the consideration of holistic information to promote personalised management and the exploration of wider multidisciplinary team roles. CONCLUSIONS: In the context of increasing demand and the escalating number of NAPs, it is timely to consider how service improvement can be facilitated. Best practice guidelines have been formulated as a product of this study, to promote a sustainable and effective model for NAPs. Review and benchmarking national panel performance against these guidelines will drive high standards of care going forward and they should be embedded as standard practice.


Subject(s)
Leukemia , Neuroblastoma , Sarcoma , Child , Humans , Adolescent , United Kingdom
19.
Nature ; 546(7660): 662-666, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28614294

ABSTRACT

During gestation the developing human fetus is exposed to a diverse range of potentially immune-stimulatory molecules including semi-allogeneic antigens from maternal cells, substances from ingested amniotic fluid, food antigens, and microbes. Yet the capacity of the fetal immune system, including antigen-presenting cells, to detect and respond to such stimuli remains unclear. In particular, dendritic cells, which are crucial for effective immunity and tolerance, remain poorly characterized in the developing fetus. Here we show that subsets of antigen-presenting cells can be identified in fetal tissues and are related to adult populations of antigen-presenting cells. Similar to adult dendritic cells, fetal dendritic cells migrate to lymph nodes and respond to toll-like receptor ligation; however, they differ markedly in their response to allogeneic antigens, strongly promoting regulatory T-cell induction and inhibiting T-cell tumour-necrosis factor-α production through arginase-2 activity. Our results reveal a previously unappreciated role of dendritic cells within the developing fetus and indicate that they mediate homeostatic immune-suppressive responses during gestation.


Subject(s)
Arginase/metabolism , Dendritic Cells/enzymology , Dendritic Cells/immunology , Fetus/immunology , Immune Tolerance , T-Lymphocytes/immunology , Adult , Cell Movement , Cell Proliferation , Cytokines/biosynthesis , Cytokines/immunology , Fetus/cytology , Fetus/enzymology , Humans , Lymph Nodes/cytology , Lymph Nodes/immunology , T-Lymphocytes/cytology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Toll-Like Receptors/immunology
20.
Proc Natl Acad Sci U S A ; 117(42): 26288-26297, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020276

ABSTRACT

Genomes of all characterized higher eukaryotes harbor examples of transposable element (TE) bursts-the rapid amplification of TE copies throughout a genome. Despite their prevalence, understanding how bursts diversify genomes requires the characterization of actively transposing TEs before insertion sites and structural rearrangements have been obscured by selection acting over evolutionary time. In this study, rice recombinant inbred lines (RILs), generated by crossing a bursting accession and the reference Nipponbare accession, were exploited to characterize the spread of the very active Ping/mPing family through a small population and the resulting impact on genome diversity. Comparative sequence analysis of 272 individuals led to the identification of over 14,000 new insertions of the mPing miniature inverted-repeat transposable element (MITE), with no evidence for silencing of the transposase-encoding Ping element. In addition to new insertions, Ping-encoded transposase was found to preferentially catalyze the excision of mPing loci tightly linked to a second mPing insertion. Similarly, structural variations, including deletion of rice exons or regulatory regions, were enriched for those with break points at one or both ends of linked mPing elements. Taken together, these results indicate that structural variations are generated during a TE burst as transposase catalyzes both the high copy numbers needed to distribute linked elements throughout the genome and the DNA cuts at the TE ends known to dramatically increase the frequency of recombination.


Subject(s)
DNA Transposable Elements/genetics , Genetic Variation/genetics , Oryza/genetics , Base Sequence/genetics , Genome, Plant/genetics , Genomics/methods , Transposases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL