Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters

Publication year range
1.
Cell ; 187(3): 563-584, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306982

ABSTRACT

Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.


Subject(s)
Biology , Microscopy, Electron , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Microscopy, Fluorescence , Time , Computer Simulation
2.
Nat Immunol ; 22(2): 140-153, 2021 02.
Article in English | MEDLINE | ID: mdl-33349708

ABSTRACT

Type 1 conventional dendritic (cDC1) cells are necessary for cross-presentation of many viral and tumor antigens to CD8+ T cells. cDC1 cells can be identified in mice and humans by high expression of DNGR-1 (also known as CLEC9A), a receptor that binds dead-cell debris and facilitates XP of corpse-associated antigens. Here, we show that DNGR-1 is a dedicated XP receptor that signals upon ligand engagement to promote phagosomal rupture. This allows escape of phagosomal contents into the cytosol, where they access the endogenous major histocompatibility complex class I antigen processing pathway. The activity of DNGR-1 maps to its signaling domain, which activates SYK and NADPH oxidase to cause phagosomal damage even when spliced into a heterologous receptor and expressed in heterologous cells. Our data reveal the existence of innate immune receptors that couple ligand binding to endocytic vesicle damage to permit MHC class I antigen presentation of exogenous antigens and to regulate adaptive immunity.


Subject(s)
Antigen Presentation , Cross-Priming , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Phagosomes/metabolism , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , T-Lymphocytes/metabolism , Animals , Cell Death , Coculture Techniques , Dendritic Cells/immunology , HEK293 Cells , Histocompatibility Antigens Class I/metabolism , Humans , Lectins, C-Type/genetics , Ligands , Mice , NADPH Oxidases/metabolism , Phagosomes/genetics , Phagosomes/immunology , Phosphorylation , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Receptors, Immunologic/genetics , Receptors, Mitogen/genetics , Signal Transduction , Syk Kinase/metabolism , T-Lymphocytes/immunology
3.
Immunity ; 54(9): 1989-2004.e9, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34363750

ABSTRACT

The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.


Subject(s)
Autophagy/physiology , Endothelial Cells/physiology , Neutrophil Infiltration/physiology , Transendothelial and Transepithelial Migration/physiology , Animals , Chemotaxis, Leukocyte/physiology , Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Intercellular Junctions/physiology , Mice , Mice, Inbred C57BL , Neutrophils/physiology
4.
Cell ; 162(2): 271-286, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26186187

ABSTRACT

Repair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which nucleates RAD-51-ssDNA filaments, RFS-1/RIP-1 binds and remodels pre-synaptic filaments to a stabilized, "open," and flexible conformation, in which the ssDNA is more accessible to nuclease digestion and RAD-51 dissociation rate is reduced. Walker box mutations in RFS-1, which abolish filament remodeling, fail to stimulate RAD-51 strand exchange activity, demonstrating that remodeling is essential for RFS-1/RIP-1 function. We propose that Rad51 paralogs stimulate HR by remodeling the Rad51 filament, priming it for strand exchange with the template duplex.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Carrier Proteins/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Homologous Recombination , Rad51 Recombinase/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Mutation , Nuclear Pore Complex Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 120(30): e2306420120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37463201

ABSTRACT

To ensure their survival in the human bloodstream, malaria parasites degrade up to 80% of the host erythrocyte hemoglobin in an acidified digestive vacuole. Here, we combine conditional reverse genetics and quantitative imaging approaches to demonstrate that the human malaria pathogen Plasmodium falciparum employs a heteromultimeric V-ATPase complex to acidify the digestive vacuole matrix, which is essential for intravacuolar hemoglobin release, heme detoxification, and parasite survival. We reveal an additional function of the membrane-embedded V-ATPase subunits in regulating morphogenesis of the digestive vacuole independent of proton translocation. We further show that intravacuolar accumulation of antimalarial chemotherapeutics is surprisingly resilient to severe deacidification of the vacuole and that modulation of V-ATPase activity does not affect parasite sensitivity toward these drugs.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Animals , Humans , Antimalarials/pharmacology , Antimalarials/metabolism , Adenosine Triphosphatases/metabolism , Vacuoles , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism
8.
Nature ; 572(7771): 603-608, 2019 08.
Article in English | MEDLINE | ID: mdl-31462798

ABSTRACT

Direct investigation of the early cellular changes induced by metastatic cells within the surrounding tissue remains a challenge. Here we present a system in which metastatic cancer cells release a cell-penetrating fluorescent protein, which is taken up by neighbouring cells and enables spatial identification of the local metastatic cellular environment. Using this system, tissue cells with low representation in the metastatic niche can be identified and characterized within the bulk tissue. To highlight its potential, we applied this strategy to study the cellular environment of metastatic breast cancer cells in the lung. We report the presence of cancer-associated parenchymal cells, which exhibit stem-cell-like features, expression of lung progenitor markers, multi-lineage differentiation potential and self-renewal activity. In ex vivo assays, lung epithelial cells acquire a cancer-associated parenchymal-cell-like phenotype when co-cultured with cancer cells and support their growth. These results highlight the potential of this method as a platform for new discoveries.


Subject(s)
Cell Lineage , Cell Tracking/methods , Neoplasm Metastasis/pathology , Neoplastic Stem Cells/pathology , Parenchymal Tissue/pathology , Staining and Labeling/methods , Stem Cell Niche , Tumor Microenvironment , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Differentiation , Coculture Techniques , Epithelial Cells/pathology , Female , Humans , Luminescent Proteins/analysis , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Male , Mice , Neoplasm Metastasis/immunology , Neutrophils/pathology , Organoids/pathology , Stem Cell Niche/immunology , Tumor Microenvironment/immunology , Red Fluorescent Protein
9.
Development ; 148(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34532737

ABSTRACT

Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. Loss of RASSF8 elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, the depletion of which phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.


Subject(s)
Cell Adhesion Molecules/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Epithelium/metabolism , Repressor Proteins/metabolism , Wings, Animal/metabolism , Adherens Junctions/metabolism , Animals , Carrier Proteins , Cytoplasm/metabolism , Morphogenesis/physiology , Pupa/metabolism
10.
PLoS Biol ; 19(5): e3001230, 2021 05.
Article in English | MEDLINE | ID: mdl-33945525

ABSTRACT

Obesity-related renal lipotoxicity and chronic kidney disease (CKD) are prevalent pathologies with complex aetiologies. One hallmark of renal lipotoxicity is the ectopic accumulation of lipid droplets in kidney podocytes and in proximal tubule cells. Renal lipid droplets are observed in human CKD patients and in high-fat diet (HFD) rodent models, but their precise role remains unclear. Here, we establish a HFD model in Drosophila that recapitulates renal lipid droplets and several other aspects of mammalian CKD. Cell type-specific genetic manipulations show that lipid can overflow from adipose tissue and is taken up by renal cells called nephrocytes. A HFD drives nephrocyte lipid uptake via the multiligand receptor Cubilin (Cubn), leading to the ectopic accumulation of lipid droplets. These nephrocyte lipid droplets correlate with endoplasmic reticulum (ER) and mitochondrial deficits, as well as with impaired macromolecular endocytosis, a key conserved function of renal cells. Nephrocyte knockdown of diglyceride acyltransferase 1 (DGAT1), overexpression of adipose triglyceride lipase (ATGL), and epistasis tests together reveal that fatty acid flux through the lipid droplet triglyceride compartment protects the ER, mitochondria, and endocytosis of renal cells. Strikingly, boosting nephrocyte expression of the lipid droplet resident enzyme ATGL is sufficient to rescue HFD-induced defects in renal endocytosis. Moreover, endocytic rescue requires a conserved mitochondrial regulator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α). This study demonstrates that lipid droplet lipolysis counteracts the harmful effects of a HFD via a mitochondrial pathway that protects renal endocytosis. It also provides a genetic strategy for determining whether lipid droplets in different biological contexts function primarily to release beneficial or to sequester toxic lipids.


Subject(s)
Lipase/metabolism , Lipid Droplets/metabolism , Renal Insufficiency, Chronic/metabolism , Adipose Tissue/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Endocytosis/physiology , Epithelial Cells/metabolism , Fatty Acids/metabolism , Humans , Kidney/pathology , Lipase/physiology , Lipid Droplets/physiology , Lipid Metabolism/physiology , Lipids/physiology , Mitochondria/metabolism , Obesity/complications , Renal Insufficiency, Chronic/physiopathology , Triglycerides/metabolism
11.
PLoS Biol ; 19(10): e3001408, 2021 10.
Article in English | MEDLINE | ID: mdl-34695132

ABSTRACT

We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.


Subject(s)
Erythrocytes/parasitology , Myristic Acid/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Erythrocytes/drug effects , Lipoylation/drug effects , Merozoites/drug effects , Merozoites/metabolism , Parasites/drug effects , Parasites/growth & development , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/ultrastructure , Solubility , Substrate Specificity/drug effects
12.
Mol Cell ; 64(5): 926-939, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27867009

ABSTRACT

Central to homologous recombination in eukaryotes is the RAD51 recombinase, which forms helical nucleoprotein filaments on single-stranded DNA (ssDNA) and catalyzes strand invasion with homologous duplex DNA. Various regulatory proteins assist this reaction including the RAD51 paralogs. We recently discovered that a RAD51 paralog complex from C. elegans, RFS-1/RIP-1, functions predominantly downstream of filament assembly by binding and remodeling RAD-51-ssDNA filaments to a conformation more proficient for strand exchange. Here, we demonstrate that RFS-1/RIP-1 acts by shutting down RAD-51 dissociation from ssDNA. Using stopped-flow experiments, we show that RFS-1/RIP-1 confers this dramatic stabilization by capping the 5' end of RAD-51-ssDNA filaments. Filament end capping propagates a stabilizing effect with a 5'→3' polarity approximately 40 nucleotides along individual filaments. Finally, we discover that filament capping and stabilization are dependent on nucleotide binding, but not hydrolysis by RFS-1/RIP-1. These data define the mechanism of RAD51 filament remodeling by RAD51 paralogs.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Intermediate Filaments/metabolism , Rad51 Recombinase/metabolism , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA, Single-Stranded/genetics , Intermediate Filaments/genetics , Multiprotein Complexes/metabolism , Protein Binding , Rad51 Recombinase/genetics , Recombinational DNA Repair
13.
Traffic ; 22(7): 240-253, 2021 07.
Article in English | MEDLINE | ID: mdl-33914396

ABSTRACT

Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high-quality ground-truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high-quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data.


Subject(s)
Deep Learning , HeLa Cells , Humans , Microscopy, Electron , Nuclear Envelope , Volunteers
14.
Histochem Cell Biol ; 160(3): 253-276, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37284846

ABSTRACT

Public participation in research, also known as citizen science, is being increasingly adopted for the analysis of biological volumetric data. Researchers working in this domain are applying online citizen science as a scalable distributed data analysis approach, with recent research demonstrating that non-experts can productively contribute to tasks such as the segmentation of organelles in volume electron microscopy data. This, alongside the growing challenge to rapidly process the large amounts of biological volumetric data now routinely produced, means there is increasing interest within the research community to apply online citizen science for the analysis of data in this context. Here, we synthesise core methodological principles and practices for applying citizen science for analysis of biological volumetric data. We collate and share the knowledge and experience of multiple research teams who have applied online citizen science for the analysis of volumetric biological data using the Zooniverse platform ( www.zooniverse.org ). We hope this provides inspiration and practical guidance regarding how contributor effort via online citizen science may be usefully applied in this domain.


Subject(s)
Citizen Science , Humans , Community Participation
15.
Proc Natl Acad Sci U S A ; 117(28): 16546-16556, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601225

ABSTRACT

During blood-stage development, malaria parasites are challenged with the detoxification of enormous amounts of heme released during the proteolytic catabolism of erythrocytic hemoglobin. They tackle this problem by sequestering heme into bioinert crystals known as hemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control heme crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of hemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multidirectional crystal branching. Although hemoglobin processing remains unaffected, PV5-deficient parasites generate less hemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology, neither the crystalline order nor unit cell of hemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in hemozoin formation and underscore the heme biomineralization pathway as an attractive target for therapeutic exploitation.


Subject(s)
Heme/metabolism , Lipocalins/metabolism , Malaria/parasitology , Plasmodium berghei/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Hemeproteins/genetics , Hemeproteins/metabolism , Humans , Lipocalins/chemistry , Lipocalins/genetics , Malaria/metabolism , Mice , Plasmodium berghei/chemistry , Plasmodium berghei/genetics , Plasmodium falciparum/chemistry , Plasmodium falciparum/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
16.
J Cell Sci ; 133(6)2020 03 30.
Article in English | MEDLINE | ID: mdl-32079660

ABSTRACT

Signalling by target-derived neurotrophins is essential for the correct development of the nervous system and its maintenance throughout life. Several aspects concerning the lifecycle of neurotrophins and their receptors have been characterised over the years, including the formation, endocytosis and trafficking of signalling-competent ligand-receptor complexes. However, the molecular mechanisms directing the sorting of activated neurotrophin receptors are still elusive. Previously, our laboratory identified Bicaudal-D1 (BICD1), a dynein motor adaptor, as a key factor for lysosomal degradation of brain-derived neurotrophic factor (BDNF)-activated TrkB (also known as NTRK2) and p75NTR (also known as NGFR) in motor neurons. Here, using a proteomics approach, we identified protein tyrosine phosphatase, non-receptor type 23 (PTPN23), a member of the endosomal sorting complexes required for transport (ESCRT) machinery, in the BICD1 interactome. Molecular mapping revealed that PTPN23 is not a canonical BICD1 cargo; instead, PTPN23 binds the N-terminus of BICD1, which is also essential for the recruitment of cytoplasmic dynein. In line with the BICD1-knockdown phenotype, loss of PTPN23 leads to increased accumulation of BDNF-activated p75NTR and TrkB in swollen vacuole-like compartments, suggesting that neuronal PTPN23 is a novel regulator of the endocytic sorting of neurotrophin receptors.


Subject(s)
Dyneins , Phosphoric Monoester Hydrolases , Protein Tyrosine Phosphatases, Non-Receptor , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Dyneins/genetics , Mice , Protein Transport , Receptor, trkB/genetics , Receptor, trkB/metabolism , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism
17.
J Cell Sci ; 134(5)2020 11 25.
Article in English | MEDLINE | ID: mdl-32938685

ABSTRACT

Xenophagy is an important cellular defence mechanism against cytosol-invading pathogens, such as Mycobacterium tuberculosis (Mtb). Activation of xenophagy in macrophages targets Mtb to autophagosomes; however, how Mtb is targeted to autophagosomes in human macrophages at a high spatial and temporal resolution is unknown. Here, we use human induced pluripotent stem cell-derived macrophages (iPSDMs) to study the human macrophage response to Mtb infection and the role of the ESX-1 type VII secretion system. Using RNA-seq, we identify ESX-1-dependent transcriptional responses in iPSDMs after infection with Mtb. This analysis revealed differential inflammatory responses and dysregulated pathways such as eukaryotic initiation factor 2 (eIF2) signalling and protein ubiquitylation. Moreover, live-cell imaging revealed that Mtb infection in human macrophages induces dynamic ESX-1-dependent, LC3B-positive tubulovesicular autophagosomes (LC3-TVS). Through a correlative live-cell and focused ion beam scanning electron microscopy (FIB SEM) approach, we show that upon phagosomal rupture, Mtb induces the formation of LC3-TVS, from which the bacterium is able to escape to reside in the cytosol. Thus, iPSDMs represent a valuable model for studying spatiotemporal dynamics of human macrophage-Mtb interactions, and Mtb is able to evade capture by autophagic compartments.


Subject(s)
Induced Pluripotent Stem Cells , Mycobacterium tuberculosis , Tuberculosis , Autophagy , Humans , Macroautophagy , Macrophages
20.
PLoS Pathog ; 15(9): e1008049, 2019 09.
Article in English | MEDLINE | ID: mdl-31491036

ABSTRACT

The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite.


Subject(s)
Erythrocytes/parasitology , Host-Parasite Interactions/physiology , Protozoan Proteins/metabolism , Antigens, Protozoan/immunology , Humans , Malaria/metabolism , Malaria, Falciparum/metabolism , Membrane Proteins/metabolism , Merozoites/metabolism , Organelles/metabolism , Plasmodium falciparum/metabolism , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL