Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Mol Cell ; 81(10): 2123-2134.e5, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33794146

ABSTRACT

A body of data supports the existence of core (α2-α5) dimers of BAK and BAX in the oligomeric, membrane-perturbing conformation of these essential apoptotic effector molecules. Molecular structures for these dimers have only been captured for truncated constructs encompassing the core domain alone. Here, we report a crystal structure of BAK α2-α8 dimers (i.e., minus its flexible N-terminal helix and membrane-anchoring C-terminal segment) that has been obtained through the activation of monomeric BAK with the detergent C12E8. Core dimers are evident, linked through the crystal by contacts via latch (α6-α8) domains. This crystal structure shows activated BAK dimers with the extended latch domain present. Our data provide direct evidence for the conformational change converting BAK from inert monomer to the functional dimer that destroys mitochondrial integrity. This dimer is the smallest functional unit for recombinant BAK or BAX described so far.


Subject(s)
Detergents/chemistry , Protein Multimerization , bcl-2 Homologous Antagonist-Killer Protein/chemistry , Amino Acid Sequence , Animals , Liposomes , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Protein Structure, Secondary , bcl-2 Homologous Antagonist-Killer Protein/metabolism
2.
Cell ; 152(3): 519-31, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23374347

ABSTRACT

In stressed cells, apoptosis ensues when Bcl-2 family members Bax or Bak oligomerize and permeabilize the mitochondrial outer membrane. Certain BH3-only relatives can directly activate them to mediate this pivotal, poorly understood step. To clarify the conformational changes that induce Bax oligomerization, we determined crystal structures of BaxΔC21 treated with detergents and BH3 peptides. The peptides bound the Bax canonical surface groove but, unlike their complexes with prosurvival relatives, dissociated Bax into two domains. The structures define the sequence signature of activator BH3 domains and reveal how they can activate Bax via its groove by favoring release of its BH3 domain. Furthermore, Bax helices α2-α5 alone adopted a symmetric homodimer structure, supporting the proposal that two Bax molecules insert their BH3 domain into each other's surface groove to nucleate oligomerization. A planar lipophilic surface on this homodimer may engage the membrane. Our results thus define critical Bax transitions toward apoptosis.


Subject(s)
Apoptosis , Crystallography, X-Ray , bcl-2-Associated X Protein/chemistry , Amino Acid Sequence , Animals , Cytochromes c/metabolism , Dimerization , Embryo, Mammalian/metabolism , Hydrophobic and Hydrophilic Interactions , Liposomes/metabolism , Liver/metabolism , Mice , Mitochondria/metabolism , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Structure, Tertiary , Sequence Alignment , bcl-2-Associated X Protein/metabolism
3.
Mol Cell ; 68(4): 659-672.e9, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29149594

ABSTRACT

Certain BH3-only proteins transiently bind and activate Bak and Bax, initiating their oligomerization and the permeabilization of the mitochondrial outer membrane, a pivotal step in the mitochondrial pathway to apoptosis. Here we describe the first crystal structures of an activator BH3 peptide bound to Bak and illustrate their use in the design of BH3 derivatives capable of inhibiting human Bak on mitochondria. These BH3 derivatives compete for the activation site at the canonical groove, are the first engineered inhibitors of Bak activation, and support the role of key conformational transitions associated with Bak activation.


Subject(s)
Apoptosis/drug effects , Bcl-2-Like Protein 11 , Mitochondria , Peptides , bcl-2 Homologous Antagonist-Killer Protein , Animals , Bcl-2-Like Protein 11/chemistry , Bcl-2-Like Protein 11/pharmacology , Cell Line, Transformed , Humans , Mice , Mitochondria/genetics , Mitochondria/metabolism , Peptides/chemistry , Peptides/pharmacology , Protein Binding , Structure-Activity Relationship , bcl-2 Homologous Antagonist-Killer Protein/chemistry , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism
4.
Annu Rev Biochem ; 78: 95-118, 2009.
Article in English | MEDLINE | ID: mdl-19254207

ABSTRACT

Progress in the discovery of new antiviral medicines is tempered by the rapidity with which drug-resistant variants emerge. A review of the resistance-suppressing properties of four classes of antivirals is presented: influenza virus neuraminidase inhibitors, HIV protease inhibitors, antibodies, and protein-based fusion inhibitors. The analysis supports the hypothesis that the more similar the drug is to the target's natural ligands, the higher the barrier to resistance. However, other factors, such as entropy compensation and solvent anchoring, might also be exploited for improved drug design.


Subject(s)
Antiviral Agents/therapeutic use , Drug Design , Drug Resistance, Viral , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Virus Diseases/drug therapy
5.
Genes Dev ; 30(10): 1240-50, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27198225

ABSTRACT

Due to the myriad interactions between prosurvival and proapoptotic members of the Bcl-2 family of proteins, establishing the mechanisms that regulate the intrinsic apoptotic pathway has proven challenging. Mechanistic insights have primarily been gleaned from in vitro studies because genetic approaches in mammals that produce unambiguous data are difficult to design. Here we describe a mutation in mouse and human Bak that specifically disrupts its interaction with the prosurvival protein Bcl-xL Substitution of Glu75 in mBak (hBAK Q77) for leucine does not affect the three-dimensional structure of Bak or killing activity but reduces its affinity for Bcl-xL via loss of a single hydrogen bond. Using this mutant, we investigated the requirement for physical restraint of Bak by Bcl-xL in apoptotic regulation. In vitro, Bak(Q75L) cells were significantly more sensitive to various apoptotic stimuli. In vivo, loss of Bcl-xL binding to Bak led to significant defects in T-cell and blood platelet survival. Thus, we provide the first definitive in vivo evidence that prosurvival proteins maintain cellular viability by interacting with and inhibiting Bak.


Subject(s)
Apoptosis/genetics , Blood Platelets/cytology , T-Lymphocytes/cytology , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-X Protein/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Blood Platelets/drug effects , Blood Platelets/metabolism , Cell Line , Cell Survival/genetics , Humans , Mice , Mice, Inbred C57BL , Mutation , Protein Binding , Protein Conformation , Protein Domains/genetics , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics
6.
Biophys J ; 121(3): 347-360, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34973947

ABSTRACT

Apoptosis, the intrinsic programmed cell death process, is mediated by the Bcl-2 family members Bak and Bax. Activation via formation of symmetric core dimers and oligomerization on the mitochondrial outer membrane (MOM) leads to permeabilization and cell death. Although this process is linked to the MOM, the role of the membrane in facilitating such pores is poorly understood. We recently described Bak core domain dimers, revealing lipid binding sites and an initial role of lipids in oligomerization. Here we describe simulations that identified localized clustering and interaction of triacylglycerides (TAGs) with a minimized Bak dimer construct. Coalescence of TAGs occurred beneath this Bak dimer, mitigating dimer-induced local membrane thinning and curvature in representative coarse-grain MOM and model membrane systems. Furthermore, the effects observed as a result of coarse-grain TAG cluster formation was concentration dependent, scaling from low physiological MOM concentrations to those found in other organelles. We find that increasing the TAG concentration in liposomes mimicking the MOM decreased the ability of activated Bak to permeabilize these liposomes. These results suggest that the presence of TAGs within a Bak-lipid membrane preserves membrane integrity and is associated with reduced membrane stress, suggesting a possible role of TAGs in Bak-mediated apoptosis.


Subject(s)
Liposomes , bcl-2 Homologous Antagonist-Killer Protein , Apoptosis , Lipids , Liposomes/metabolism , Mitochondrial Membranes/metabolism , bcl-2 Homologous Antagonist-Killer Protein/analysis , bcl-2 Homologous Antagonist-Killer Protein/chemistry , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
7.
Mol Cell ; 55(6): 938-946, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25175025

ABSTRACT

Apoptotic stimuli activate and oligomerize the proapoptotic proteins Bak and Bax, resulting in mitochondrial outer-membrane permeabilization and subsequent cell death. This activation can occur when certain BH3-only proteins interact directly with Bak and Bax. Recently published crystal structures reveal that Bax separates into core and latch domains in response to BH3 peptides. The distinguishing characteristics of BH3 peptides capable of directly activating Bax were also elucidated. Here we identify specific BH3 peptides capable of "unlatching" Bak and describe structural insights into Bak activation and oligomerization. Crystal structures and crosslinking experiments demonstrate that Bak undergoes a conformational change similar to that of Bax upon activation. A structure of the Bak core domain dimer provides a high-resolution image of this key intermediate in the pore-forming oligomer. Our results confirm an analogous mechanism for activation and dimerization of Bak and Bax in response to certain BH3 peptides.


Subject(s)
Peptide Fragments/metabolism , Proto-Oncogene Proteins/metabolism , bcl-2 Homologous Antagonist-Killer Protein/chemistry , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/chemistry , Animals , Crystallography , Cysteine/metabolism , Humans , Mice , Mitochondria/metabolism , Models, Molecular , Protein Conformation , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , bcl-2-Associated X Protein/metabolism
8.
Nat Chem Biol ; 15(11): 1057-1066, 2019 11.
Article in English | MEDLINE | ID: mdl-31591564

ABSTRACT

Activating the intrinsic apoptosis pathway with small molecules is now a clinically validated approach to cancer therapy. In contrast, blocking apoptosis to prevent the death of healthy cells in disease settings has not been achieved. Caspases have been favored, but they act too late in apoptosis to provide long-term protection. The critical step in committing a cell to death is activation of BAK or BAX, pro-death BCL-2 proteins mediating mitochondrial damage. Apoptosis cannot proceed in their absence. Here we show that WEHI-9625, a novel tricyclic sulfone small molecule, binds to VDAC2 and promotes its ability to inhibit apoptosis driven by mouse BAK. In contrast to caspase inhibitors, WEHI-9625 blocks apoptosis before mitochondrial damage, preserving cellular function and long-term clonogenic potential. Our findings expand on the key role of VDAC2 in regulating apoptosis and demonstrate that blocking apoptosis at an early stage is both advantageous and pharmacologically tractable.


Subject(s)
Apoptosis/physiology , Small Molecule Libraries/metabolism , Voltage-Dependent Anion Channel 2/physiology , bcl-2 Homologous Antagonist-Killer Protein/physiology , Animals , Mice , Protein Binding , Voltage-Dependent Anion Channel 2/metabolism
9.
Immunity ; 36(4): 646-57, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22483802

ABSTRACT

The immune system must distinguish viable cells from cells damaged by physical and infective processes. The damaged cell-recognition molecule Clec9A is expressed on the surface of the mouse and human dendritic cell subsets specialized for the uptake and processing of material from dead cells. Clec9A recognizes a conserved component within nucleated and nonnucleated cells, exposed when cell membranes are damaged. We have identified this Clec9A ligand as a filamentous form of actin in association with particular actin-binding domains of cytoskeletal proteins. We have determined the crystal structure of the human CLEC9A C-type lectin domain and propose a functional dimeric structure with conserved tryptophans in the ligand recognition site. Mutation of these residues ablated CLEC9A binding to damaged cells and to the isolated ligand complexes. We propose that Clec9A provides targeted recruitment of the adaptive immune system during infection and can also be utilized to enhance immune responses generated by vaccines.


Subject(s)
Actin Cytoskeleton/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , Actins/metabolism , Adaptive Immunity , Animals , Binding Sites , Cell Line , Cell Membrane/metabolism , Dendritic Cells/cytology , Female , Humans , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Protein Structure, Secondary , Receptors, Immunologic/genetics , Receptors, Mitogen/chemistry , Receptors, Mitogen/genetics , Spectrin/metabolism
10.
Mol Cell ; 30(3): 369-80, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18471982

ABSTRACT

The Bcl-2 relative Bak is thought to drive apoptosis by forming homo-oligomers that permeabilize mitochondria, but how it is activated and oligomerizes is unclear. To clarify these pivotal steps toward apoptosis, we have characterized multiple random loss-of-function Bak mutants and explored the mechanism of Bak conformation change during apoptosis. Single missense mutations located to the alpha helix 2-5 region of Bak, with most altering the BH3 domain or hydrophobic groove (BH1 domain). Loss of function invariably corresponded to impaired ability to oligomerize. An essential early step in Bak activation was shown to be exposure of the BH3 domain, which became reburied in dimers. We demonstrate that oligomerization involves insertion of the BH3 domain of one Bak molecule into the groove of another and may produce symmetric Bak dimers. We conclude that this BH3:groove interaction is essential to nucleate Bak oligomerization, which in turn is required for its proapoptotic function.


Subject(s)
Apoptosis/physiology , Protein Conformation , bcl-2 Homologous Antagonist-Killer Protein/chemistry , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , BH3 Interacting Domain Death Agonist Protein/genetics , BH3 Interacting Domain Death Agonist Protein/metabolism , Bcl-2-Like Protein 11 , Cells, Cultured , Dimerization , Disulfides/chemistry , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Models, Molecular , Molecular Sequence Data , Mutation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction/physiology , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
11.
J Biol Chem ; 289(52): 36001-17, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25371206

ABSTRACT

Bcl-2 homology 3 (BH3) domains are short sequence motifs that mediate nearly all protein-protein interactions between B cell lymphoma 2 (Bcl-2) family proteins in the intrinsic apoptotic cell death pathway. These sequences are found on both pro-survival and pro-apoptotic members, although their primary function is believed to be associated with induction of cell death. Here, we identify critical features of the BH3 domains of pro-survival proteins that distinguish them functionally from their pro-apoptotic counterparts. Biochemical and x-ray crystallographic studies demonstrate that these differences reduce the capacity of most pro-survival proteins to form high affinity "BH3-in-groove" complexes that are critical for cell death induction. Switching these residues for the corresponding residues in Bcl-2 homologous antagonist/killer (Bak) increases the binding affinity of isolated BH3 domains for pro-survival proteins; however, their exchange in the context of the parental protein causes rapid proteasomal degradation due to protein destabilization. This is supported by further x-ray crystallographic studies that capture elements of this destabilization in one pro-survival protein, Bcl-w. In pro-apoptotic Bak, we demonstrate that the corresponding distinguishing residues are important for its cell-killing capacity and antagonism by pro-survival proteins.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , bcl-X Protein/chemistry , Amino Acid Sequence , Animals , Apoptosis , Apoptosis Regulatory Proteins/physiology , Cell Survival , Cells, Cultured , Crystallography, X-Ray , Cytochromes c/metabolism , Mice , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Interaction Domains and Motifs , Protein Stability , bcl-X Protein/physiology
12.
J Virol ; 88(15): 8667-77, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24850748

ABSTRACT

UNLABELLED: Apoptosis is a tightly regulated process that plays a crucial role in the removal of virus-infected cells, a process controlled by both pro- and antiapoptotic members of the Bcl-2 family. The proapoptotic proteins Bak and Bax are regulated by antiapoptotic Bcl-2 proteins and are also activated by a subset of proteins known as BH3-only proteins that perform dual functions by directly activating Bak and Bax or by sequestering and neutralizing antiapoptotic family members. Numerous viruses express proteins that prevent premature host cell apoptosis. Vaccinia virus encodes F1L, an antiapoptotic protein essential for survival of infected cells that bears no discernible sequence homology to mammalian cell death inhibitors. Despite the limited sequence similarities, F1L has been shown to adopt a novel dimeric Bcl-2-like fold that enables hetero-oligomeric binding to both Bak and the proapoptotic BH3-only protein Bim that ultimately prevents Bak and Bax homo-oligomerization. However, no structural data on the mode of engagement of F1L and its Bcl-2 counterparts are available. Here we solved the crystal structures of F1L in complex with two ligands, Bim and Bak. Our structures indicate that F1L can engage two BH3 ligands simultaneously via the canonical Bcl-2 ligand binding grooves. Furthermore, by structure-guided mutagenesis, we generated point mutations within the binding pocket of F1L in order to elucidate the residues responsible for both Bim and Bak binding and prevention of apoptosis. We propose that the sequestration of Bim by F1L is primarily responsible for preventing apoptosis during vaccinia virus infection. IMPORTANCE: Numerous viruses have adapted strategies to counteract apoptosis by encoding proteins responsible for sequestering proapoptotic components. Vaccinia virus, the prototypical member of the family Orthopoxviridae, encodes a protein known as F1L that functions to prevent apoptosis by interacting with Bak and the BH3-only protein Bim. Despite recent structural advances, little is known regarding the mechanics of binding between F1L and the proapoptotic Bcl-2 family members. Utilizing three-dimensional structures of F1L bound to host proapoptotic proteins, we generated variants of F1L that neutralize Bim and/or Bak. We demonstrate that during vaccinia virus infection, engagement of Bim and Bak by F1L is crucial for subversion of host cell apoptosis.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , bcl-2 Homologous Antagonist-Killer Protein/chemistry , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Animals , Bcl-2-Like Protein 11 , Binding Sites , Cell Line , Crystallography, X-Ray , DNA Mutational Analysis , Humans , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Point Mutation , Protein Binding , Protein Conformation , Viral Proteins/genetics
13.
Nat Chem Biol ; 9(6): 390-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23603658

ABSTRACT

The prosurvival BCL-2 family protein BCL-X(L) is often overexpressed in solid tumors and renders malignant tumor cells resistant to anticancer therapeutics. Enhancing apoptotic responses by inhibiting BCL-X(L) will most likely have widespread utility in cancer treatment and, instead of inhibiting multiple prosurvival BCL-2 family members, a BCL-X(L)-selective inhibitor would be expected to minimize the toxicity to normal tissues. We describe the use of a high-throughput screen to discover a new series of small molecules targeting BCL-X(L) and their structure-guided development by medicinal chemistry. The optimized compound, WEHI-539 (7), has high affinity (subnanomolar) and selectivity for BCL-X(L) and potently kills cells by selectively antagonizing its prosurvival activity. WEHI-539 will be an invaluable tool for distinguishing the roles of BCL-X(L) from those of its prosurvival relatives, both in normal cells and notably in malignant tumor cells, many of which may prove to rely upon BCL-X(L) for their sustained growth.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/chemistry , Animals , Apoptosis , Benzothiazoles/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Hydrazones/chemistry , Kinetics , Mice , Models, Chemical , Myeloid Cell Leukemia Sequence 1 Protein , Protein Binding , Proto-Oncogene Proteins c-bcl-2/genetics
14.
Arch Biochem Biophys ; 545: 33-43, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24434006

ABSTRACT

Activation and oligomerisation of Bax, a key pro-apoptotic Bcl-2 family protein, are key steps in the mitochondrial pathway to apoptosis. The signals for apoptosis are conveyed by the distantly related BH3-only proteins, which use their short BH3 domain, an amphipathic α-helix, to interact with other Bcl-2 family members. Here we report an NMR study of interactions between BaxΔC and BH3 domain-containing peptides in the absence and presence of CHAPS, a zwitterionic detergent. We find for the first time that CHAPS interacts weakly with BaxΔC (fast exchange on the NMR chemical shift timescale), at concentrations below micelle formation and with an estimated Kd in the tens of mM. Direct and relatively strong-interactions (slow exchange on the NMR chemical shift timescale) were also observed for BaxΔC with BaxBH3 (estimated Kd of circa 150µM) or BimBH3 in the absence of CHAPS. The interaction with either peptide alone induced widespread chemical shift perturbations to BaxΔC in solution which implies that BaxΔC might have undergone significant conformation change upon binding the BH3 peptide. However, BaxΔC remained monomeric upon binding either CHAPS or a BH3 peptide alone, but the presence of both provoked it to form a dimer.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Cholic Acids/metabolism , Detergents/metabolism , Membrane Proteins/metabolism , Peptide Fragments/metabolism , Proto-Oncogene Proteins/metabolism , bcl-2-Associated X Protein/metabolism , Apoptosis , Apoptosis Regulatory Proteins/chemistry , Bcl-2-Like Protein 11 , Humans , Membrane Proteins/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Protein Conformation , Protein Interaction Maps , Protein Multimerization , Proto-Oncogene Proteins/chemistry , bcl-2-Associated X Protein/chemistry
15.
Proc Natl Acad Sci U S A ; 108(17): 6999-7003, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21444803

ABSTRACT

Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2-regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2-like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with "BH3 mimetic" drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment.


Subject(s)
Apoptosis/physiology , Helminth Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Schistosoma japonicum/metabolism , Schistosoma mansoni/metabolism , Animals , Apoptosis/drug effects , Biphenyl Compounds/pharmacology , Crystallography, X-Ray , Helminth Proteins/antagonists & inhibitors , Helminth Proteins/genetics , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Nitrophenols/pharmacology , Peptide Fragments/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Schistosoma japonicum/genetics , Schistosoma mansoni/genetics , Schistosomiasis japonica/drug therapy , Schistosomiasis japonica/genetics , Schistosomiasis japonica/metabolism , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/genetics , Schistosomiasis mansoni/metabolism , Sulfonamides/pharmacology
16.
J Virol ; 86(21): 11501-11, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22896610

ABSTRACT

Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.


Subject(s)
Apoptosis , Capripoxvirus/pathogenicity , Immune Evasion , Viral Proteins/metabolism , Virulence Factors/metabolism , bcl-2 Homologous Antagonist-Killer Protein/antagonists & inhibitors , bcl-2-Associated X Protein/antagonists & inhibitors , Amino Acid Sequence , Animals , Cell Line , Humans , Mice , Molecular Sequence Data , Sequence Homology, Amino Acid
17.
FEBS J ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38088212

ABSTRACT

The B-cell lymphoma 2 (BCL2) family members, BCL2-associated protein X (BAX) and BCL2 homologous antagonist killer (BAK), are required for programmed cell death via the mitochondrial pathway. When cells are stressed, damaged or redundant, the balance of power between the BCL2 family of proteins shifts towards BAX and BAK, allowing their transition from an inactive, monomeric state to a membrane-active oligomeric form that releases cytochrome c from the mitochondrial intermembrane space. That oligomeric state has an essential intermediate, a symmetric homodimer of BAX or BAK. Here we describe crystal structures of dimers of the core domain of BAX, comprising its helices α2-α5. These structures provide an atomic resolution description of the interactions that drive BAX homo-dimerisation and insights into potential interaction between core domain dimers and membrane lipids. The previously identified BAK lipid-interacting sites are not conserved with BAX and are likely to determine the differences between them in their interactions with lipids. We also describe structures of heterodimers of BAK/BAX core domains, yielding further insight into the differences in lipid binding between BAX and BAK.

18.
J Biol Chem ; 286(9): 7123-31, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21199865

ABSTRACT

Pro-survival members of the Bcl-2 family of proteins restrain the pro-apoptotic activity of Bax, either directly through interactions with Bax or indirectly by sequestration of activator BH3-only proteins, or both. Mutations in Bax that promote apoptosis can provide insight into how Bax is regulated. Here, we describe crystal structures of the pro-survival proteins Mcl-1 and Bcl-x(L) in complex with a 34-mer peptide from Bax that encompasses its BH3 domain. These structures reveal canonical interactions between four signature hydrophobic amino acids from the BaxBH3 domain and the BH3-binding groove of the pro-survival proteins. In both structures, Met-74 from the Bax peptide engages with the BH3-binding groove in a fifth hydrophobic interaction. Various Bax Met-74 mutants disrupt interactions between Bax and all pro-survival proteins, but these Bax mutants retain pro-apoptotic activity. Bax/Bak-deficient mouse embryonic fibroblast cells reconstituted with several Bax Met-74 mutants are more sensitive to the BH3 mimetic compound ABT-737 as compared with cells expressing wild-type Bax. Furthermore, the cells expressing Bax Met-74 mutants are less viable in colony assays even in the absence of an external apoptotic stimulus. These results support a model in which direct restraint of Bax by pro-survival Bcl-2 proteins is a barrier to apoptosis.


Subject(s)
Apoptosis/physiology , bcl-2-Associated X Protein , Animals , Apoptosis/drug effects , Biphenyl Compounds/pharmacology , Cell Survival/physiology , Cells, Cultured , Crystallography , Fibroblasts/cytology , Fibroblasts/physiology , Humans , Mice , Mitochondria/physiology , Mutagenesis/physiology , Myeloid Cell Leukemia Sequence 1 Protein , Nitrophenols/pharmacology , Piperazines/pharmacology , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Saccharomyces cerevisiae/physiology , Sulfonamides/pharmacology , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
19.
J Am Chem Soc ; 134(1): 315-23, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22040025

ABSTRACT

Peptidic oligomers that contain both α- and ß-amino acid residues, in regular patterns throughout the backbone, are emerging as structural mimics of α-helix-forming conventional peptides (composed exclusively of α-amino acid residues). Here we describe a comprehensive evaluation of diverse α/ß-peptide homologues of the Bim BH3 domain in terms of their ability to bind to the BH3-recognition sites on two partner proteins, Bcl-x(L) and Mcl-1. These proteins are members of the anti-apoptotic Bcl-2 family, and both bind tightly to the Bim BH3 domain itself. All α/ß-peptide homologues retain the side-chain sequence of the Bim BH3 domain, but each homologue contains periodic α-residue → ß(3)-residue substitutions. Previous work has shown that the ααßαααß pattern, which aligns the ß(3)-residues in a 'stripe' along one side of the helix, can support functional α-helix mimicry, and the results reported here strengthen this conclusion. The present study provides the first evaluation of functional mimicry by ααß and αααß patterns, which cause the ß(3)-residues to spiral around the helix periphery. We find that the αααß pattern can support effective mimicry of the Bim BH3 domain, as manifested by the crystal structure of an α/ß-peptide bound to Bcl-x(L), affinity for a variety of Bcl-2 family proteins, and induction of apoptotic signaling in mouse embryonic fibroblast extracts. The best αααß homologue shows substantial protection from proteolytic degradation relative to the Bim BH3 α-peptide.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Membrane Proteins/chemistry , Peptide Fragments/chemistry , Proto-Oncogene Proteins/chemistry , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Crystallography, X-Ray , Membrane Proteins/metabolism , Mice , Models, Molecular , Molecular Sequence Data , Myeloid Cell Leukemia Sequence 1 Protein , Peptide Fragments/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-X Protein/metabolism
20.
PLoS Pathog ; 6(12): e1001236, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21203485

ABSTRACT

Epstein-Barr virus (EBV) is associated with human malignancies, especially those affecting the B cell compartment such as Burkitt lymphoma. The virally encoded homolog of the mammalian pro-survival protein Bcl-2, BHRF1 contributes to viral infectivity and lymphomagenesis. In addition to the pro-apoptotic BH3-only protein Bim, its key target in lymphoid cells, BHRF1 also binds a selective sub-set of pro-apoptotic proteins (Bid, Puma, Bak) expressed by host cells. A consequence of BHRF1 expression is marked resistance to a range of cytotoxic agents and in particular, we show that its expression renders a mouse model of Burkitt lymphoma untreatable. As current small organic antagonists of Bcl-2 do not target BHRF1, the structures of it in complex with Bim or Bak shown here will be useful to guide efforts to target BHRF1 in EBV-associated malignancies, which are usually associated with poor clinical outcomes.


Subject(s)
Apoptosis , Burkitt Lymphoma/virology , Herpesvirus 4, Human/pathogenicity , Viral Proteins/physiology , Animals , Apoptosis Regulatory Proteins/metabolism , Burkitt Lymphoma/etiology , Drug Resistance , Host-Pathogen Interactions , Mice , Protein Binding , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL