Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Allergy Clin Immunol ; 147(6): 2098-2107, 2021 06.
Article in English | MEDLINE | ID: mdl-33894209

ABSTRACT

BACKGROUND: Markedly elevated levels of proinflammatory cytokines and defective type-I interferon responses were reported in patients with coronavirus disease 2019 (COVID-19). OBJECTIVE: We sought to determine whether particular cytokine profiles are associated with COVID-19 severity and mortality. METHODS: Cytokine concentrations and severe acute respiratory syndrome coronavirus 2 antigen were measured at hospital admission in serum of symptomatic patients with COVID-19 (N = 115), classified at hospitalization into 3 respiratory severity groups: no need for mechanical ventilatory support (No-MVS), intermediate severity requiring mechanical ventilatory support (MVS), and critical severity requiring extracorporeal membrane oxygenation (ECMO). Principal-component analysis was used to characterize cytokine profiles associated with severity and mortality. The results were thereafter confirmed in an independent validation cohort (N = 86). RESULTS: At time of hospitalization, ECMO patients presented a dominant proinflammatory response with elevated levels of TNF-α, IL-6, IL-8, and IL-10. In contrast, an elevated type-I interferon response involving IFN-α and IFN-ß was characteristic of No-MVS patients, whereas MVS patients exhibited both profiles. Mortality at 1 month was associated with higher levels of proinflammatory cytokines in ECMO patients, higher levels of type-I interferons in No-MVS patients, and their combination in MVS patients, resulting in a combined mortality prediction accuracy of 88.5% (risk ratio, 24.3; P < .0001). Severe acute respiratory syndrome coronavirus 2 antigen levels correlated with type-I interferon levels and were associated with mortality, but not with proinflammatory response or severity. CONCLUSIONS: Distinct cytokine profiles are observed in association with COVID-19 severity and are differentially predictive of mortality according to oxygen support modalities. These results warrant personalized treatment of COVID-19 patients based on cytokine profiling.


Subject(s)
COVID-19 , Cytokines/immunology , Respiration, Artificial , SARS-CoV-2/immunology , Severity of Illness Index , Adult , Aged , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Female , Humans , Male , Middle Aged
2.
Immunity ; 37(5): 917-29, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23142782

ABSTRACT

The bone marrow (BM) has been identified as a possible organ for T cell priming, yet the fundamental mechanisms of a polyclonal immune response in the BM remain unknown. We found that after intradermal injection of modified vaccinia Ankara virus, unexpected sources of newly primed polyclonal virus-specific CD8(+), but not CD4(+), T cells were localized in the BM and the draining lymph nodes (dLNs) prior to blood circulation. We identified neutrophils as the virus-carrier cells from the dermis to the BM. In both neutrophil-depleted and Ccr1(-/-) mice, virus-specific BM CD8(+) responses were lost. Myeloid antigen-presenting cells were required for BM CD8(+) T cell priming. A systems biology analysis of dLN and BM virus-specific CD8(+) T cells revealed distinct transcriptional and multifunctional profiles for cells primed in each organ. We provide direct evidence for how antigen is transported to the BM, providing a source of virus-specific memory CD8(+) T cells.


Subject(s)
Antigens/immunology , Bone Marrow/immunology , CD8-Positive T-Lymphocytes/immunology , Dermis/immunology , Immunologic Memory/immunology , Neutrophils/immunology , Animals , Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Lymph Nodes/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/immunology , Receptors, CCR1/immunology
3.
Exp Dermatol ; 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33090548

ABSTRACT

The anatomy of the hair follicle and the dynamics of its barrier provide a special space for interactions between macromolecules and the underlying tissue. Translocation across the hair follicle epithelium and immune recognition have been confirmed for proteins, nucleic acids, engineered particles, virus particles and others. Tissue responses can be modulated by pro-inflammatory stimuli as demonstrated in penetration and transcutaneous immunization studies. Even under physiological conditions, hair follicle openings are filled with exogenous material ranging from macromolecules, engineered particles to natural particles including diverse communities of microbes. The exposed position of the infundibulum suggests that local inflammatory insults could disturb the finely tuned balance and may trigger downstream responses that initiate or facilitate local outbreaks of inflammatory hair diseases typically occurring in close spatial association with the infundibulum as observed in cicatricial alopecia. The question as to how microbial colonization or deposition of contaminants on the surface of the hair follicle epithelium interact with the barrier status under the influence of individual predisposition, may help us understand local flare-ups of inflammatory hair diseases. Specifically, learning more about skin barrier alterations in the different types of inflammatory hair diseases and cross-talk with exogenous compounds could give new insights in this less explored aspect of hair follicle homeostasis. Such knowledge may not only be used to develop supportive measures to maintain a healthy scalp. It may have wider implications for our understanding on how external factors influence inflammation and immunological responses in the skin.

4.
Exp Dermatol ; 26(10): 963-966, 2017 10.
Article in English | MEDLINE | ID: mdl-28267869

ABSTRACT

Development of new immunotherapeutic strategies relies on the ability to activate the right cells at the right place and at the right moment and on the capacity of these cells to home to the right organ(s). Skin delivery has shown high potency for immunotherapeutic administration. However, an adequate in vivo model of human skin immunity is still a critical bottleneck. We demonstrated here that the skin of human immune system mice is colonized by human hematopoietic cells, mainly human T cells and that complementation with human antigen-presenting cells at the vaccination site allowed the induction of an immune response.


Subject(s)
HLA-A2 Antigen/genetics , Hematopoietic Stem Cells/metabolism , Models, Animal , Skin/cytology , Skin/immunology , Animals , Antigens, CD34/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , HLA-A2 Antigen/metabolism , Hematopoietic Stem Cell Transplantation , Humans , Leukocyte Common Antigens/metabolism , Mice , Mice, Transgenic , Transplantation, Heterologous
5.
Bull Acad Natl Med ; 201(1): 259-272, 2017.
Article in French | MEDLINE | ID: mdl-32226055

ABSTRACT

SUMMARYThe explosion of vaccines during the 20th century allowed the control of numerous infectious plagues but multiple challenges oppose conservation and extension of these successes. The hesitation of modern societies in front of vaccinations requires researches in life, human and social sciences in order to reach a better understanding of vaccines mechanism of action and to improve the tolerance and acceptability of vaccines and additives. The ageing of the populations and the increase of subjects at risk also require to improve the immunogenicity and the efficiency of existing vaccines. The constant emergence of new epidemics or the development of the antibio-resistance imposes innovation and development of new vaccines. The recent difficulties faced by the development of vaccines against malaria, tuberculosis or AIDS illustrate the necessity of moving beyond classical recipes and of elaborating new vectors and new adjuvants, of better understanding the heterogeneity of vaccine immunity and of developing alternative routes of immunization. Multidisciplinary researches using the most recent advances in molecular, structural and cellular biology, in microbiology, immunology and of genetic engineering to answer these worldwide challenges.

7.
BMC Immunol ; 16: 18, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25879661

ABSTRACT

Vaccination has been a major advance for health care, allowing eradication or reduction of incidence and mortality of various infectious diseases. However, there are major pathogens, such as Human Immunodeficiency Virus (HIV) or the causative agent of malaria, for which classical vaccination approaches have failed, therefore requiring new vaccination strategies. The development of new vaccine strategies relies on the ability to identify the challenges posed by these pathogens. Understanding the pathogenesis and correlates of protection for these diseases, our ability to accurately direct immune responses and to vaccinate specific populations are such examples of these roadblocks. In this respect, the use of a robust, cost-effective and predictive animal model that recapitulates features of both human infection and vaccination is currently a much-needed tool. We discuss here the major limitations faced by modern vaccinology and notably, the development of humanized mice for assessing the immune system, along with their potential as vaccine models.


Subject(s)
Immunity , Vaccines , Animals , Cost-Benefit Analysis , Disease Models, Animal , Humans , Vaccination/economics , Vaccination/trends
8.
J Virol ; 88(12): 6959-69, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24719412

ABSTRACT

UNLABELLED: It is accepted that an effective prophylactic HIV-1 vaccine is likely to have the greatest impact on viral transmission rates. As previous reports have implicated DNA-priming, protein boost regimens to be efficient activators of humoral responses, we sought to optimize this regimen to further augment vaccine immunogenicity. Here we evaluated single versus concurrent intradermal (i.d.) and intramuscular (i.m.) vaccinations as a DNA-priming strategy for their abilities to elicit humoral and cellular responses against a model HIV-1 vaccine antigen, CN54-gp140. To further augment vaccine-elicited T and B cell responses, we enhanced cellular transfection with electroporation and then boosted the DNA-primed responses with homologous protein delivered subcutaneously (s.c.), intranasally (i.n.), i.m., or transcutaneously (t.c.). In mice, the concurrent priming regimen resulted in significantly elevated gamma interferon T cell responses and high-avidity antigen-specific IgG B cell responses, a hallmark of B cell maturation. Protein boosting of the concurrent DNA strategy further enhanced IgG concentrations but had little impact on T cell reactivity. Interestingly protein boosting by the subcutaneous route increased antibody avidity to a greater extent than protein boosting by either the i.m., i.n., or t.c. route, suggesting that this route may be preferential for driving B cell maturation. Using an alternative and larger animal model, the rabbit, we found the concurrent DNA-priming strategy followed by s.c. protein boosting to again be capable of eliciting high-avidity humoral responses and to also be able to neutralize HIV-1 pseudoviruses from diverse clades (clades A, B, and C). Taken together, we show that concurrent multiple-route DNA vaccinations induce strong cellular immunity, in addition to potent and high-avidity humoral immune responses. IMPORTANCE: The route of vaccination has profound effects on prevailing immune responses. Due to the insufficient immunogenicity and protection of current DNA delivery strategies, we evaluated concurrent DNA delivery via simultaneous administration of plasmid DNA by the i.m. and i.d. routes. The rationale behind this study was to provide clear evidence of the utility of concurrent vaccinations for an upcoming human clinical trial. Furthermore, this work will guide future preclinical studies by evaluating the use of model antigens and plasmids for prime-boost strategies. This paper will be of interest not only to virologists and vaccinologists working in the HIV field but also to researchers working in other viral vaccine settings and, critically, to the wider field of vaccine delivery.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/prevention & control , HIV-1/immunology , Vaccination/methods , Vaccines, DNA/immunology , AIDS Vaccines/administration & dosage , Animals , Antibodies, Viral/immunology , Electroporation , Female , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Humans , Injections, Intradermal , Injections, Intramuscular , Mice , Mice, Inbred BALB C , Rabbits , Vaccines, DNA/administration & dosage
9.
Exp Dermatol ; 24(1): 73-5, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25382068

ABSTRACT

Transcutaneous immunization (TCI) requires targeting of a maximum number of skin antigen-presenting cells as non-invasive as possible on small skin areas. In two clinical trials, we introduced cyanoacrylate skin surface stripping (CSSS) as a safe method for TCI. Here, using ex vivo human skin, we demonstrate that one CSSS procedure removed only 30% of stratum corneum, but significantly increased the penetration of 200 nm polystyrene particles deep into vellus and intermediate hair follicles from where they could not been retrieved by conventional tape stripping. Two subsequent CSSS had no striking additional effect. CSSS increased particle penetration in superficial stratum corneum and induced Langerhans cell activation. Formulation in amphiphilic ointment or massage did not substantially influences the interfollicular penetration profiles. Hair follicle (HF) targeting by CSSS could become a highly effective tool for TCI when combined with carrier-based delivery and is gaining new attention as our understanding on the HF immune system increases.


Subject(s)
Cyanoacrylates/chemistry , Hair Follicle/pathology , Langerhans Cells/cytology , Skin/drug effects , Administration, Cutaneous , Antigens, CD1/metabolism , Cell Movement , Drug Carriers/chemistry , Drug Delivery Systems , Epidermis/immunology , Epidermis/metabolism , Healthy Volunteers , Humans , Immunization , Nanoparticles/chemistry , Nanotechnology , Polystyrenes/chemistry , Skin/immunology , Skin/metabolism , Vaccines/chemistry
11.
J Immunol ; 191(2): 623-31, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23776176

ABSTRACT

Most vaccines, including those against influenza, were developed by focusing solely on humoral response for protection. However, vaccination activates different adaptive compartments that might play a role in protection. We took advantage of the pandemic 2009 A(H1N1) influenza vaccination to conduct a longitudinal integrative multiparametric analysis of seven immune parameters in vaccinated subjects. A global analysis underlined the predominance of induction of humoral and CD4 T cell responses, whereas pandemic 2009 A(H1N1)-specific CD8 responses did not improve after vaccination. A principal component analysis and hierarchical clustering of individuals showed a differential upregulation of influenza vaccine-specific immunity including hemagglutination inhibition titers, IgA(+) and IgG(+) Ab-secreting cells, effector CD4 or CD8 T cell frequencies at day 21 among individuals, suggesting a fine-tuning of the immune parameters after vaccination. This is related to individual factors including the magnitude and quality of influenza-specific immune responses before vaccination. We propose a graphical delineation of immune determinants that would be essential for a better understanding of vaccine-induced immunity in vaccination strategies.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Antibodies, Viral/immunology , Hemagglutination Inhibition Tests , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Principal Component Analysis , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
12.
Am J Respir Crit Care Med ; 189(10): 1240-9, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24646009

ABSTRACT

RATIONALE: The biology of fatal pandemic influenza infection remains undefined. OBJECTIVES: To characterize the virologic and immune parameters associated with severity or death in patients who required mechanical ventilation for A(H1N1) 2009 pneumonia of various degrees of severity during the two waves of the 2009-2011 pandemic in Paris, France. METHODS: This multicenter study included 34 unvaccinated patients with very severe or fatal confirmed influenza A(H1N1) infections. It analyzed plasma A(H1N1) 2009 reverse-transcriptase polymerase chain reaction, hemagglutinin 222G viral mutation, and humoral and cellular immune responses to the virus, assessed in hemagglutination inhibition (HI), microneutralization, ELISA, lymphoproliferative, ELISpot IFN-γ, and cytokine and chemokine assays. MEASUREMENTS AND MAIN RESULTS: The patients' median age was 35 years. Influenza A(H1N1) 2009 viremia was detected in 4 of 34 cases, and a 222G hemagglutinin mutation in 7 of 17 cases, all of them with sequential organ failure assessment greater than or equal to 8. HI antibodies were detectable in 19 of 26 survivors and undetectable in all six fatal fulminant cases. ELISA and microneutralization titers were concordant. B-cell immunophenotyping and plasma levels of immunoglobulin classes did not differ between patients who survived and died. After immune complex dissociation, influenza ELISA serology became strongly positive in the bronchoalveolar lavage of the two fatal cases tested. H1N1-specific T-cell responses in lymphoproliferative and IFN-γ assays were detectable in survivors' peripheral blood, and lymphoproliferative assays were negative in the three fatal cases tested. Plasma levels of IL-6 and IL-10 were high in fatal cases and correlated with severity. Finally, a negative HI serology 4 days after the onset of influenza symptoms predicted death from fulminant influenza (P = 0.04). CONCLUSIONS: Early negative A(H1N1) 2009 HI serology can predict death from influenza. This negative serology in fatal cases in young adults reflects the trapping of anti-H1N1 antibodies in immune complexes in the lungs, associated with poor specific helper T-cell response. Clinical trial registered with www.clinicaltrials.gov (NCT 01089400).


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Pneumonia, Viral/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , Biomarkers/blood , Female , France , Hemagglutinin Glycoproteins, Influenza Virus/blood , Humans , Influenza, Human/blood , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/mortality , Interleukin-10/immunology , Interleukin-6/immunology , Male , Middle Aged , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Predictive Value of Tests , Prospective Studies , Respiratory Care Units , Risk Factors , Sensitivity and Specificity , Severity of Illness Index
13.
Exp Dermatol ; 23(11): 850-2, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25091815

ABSTRACT

We developed a NOD-Scid IL2rγ(null) mouse model transplanted with human skin that brings fundamental insight on in vivo cellular mechanisms of intradermal immunization and antigen presentation by dermal dendritic and epidermal Langerhans cells for skin T-cell immunity. Indeed, T-cell immunity is a crucial checkpoint for the induction of in vivo rapid control of skin infection. With the long-term preservation of a complete human skin immune system, this model offers the unique opportunity not only to better understand mechanisms of skin immune response but also to test new compounds and devices for cutaneous routes of vaccination, as well as new therapeutics approach for skin diseases, allergies or infections.


Subject(s)
Skin Transplantation/methods , Skin/immunology , Animals , Humans , Immune System , Interleukin Receptor Common gamma Subunit/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Transplantation, Heterologous
14.
J Immunol ; 188(3): 952-6, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22219332

ABSTRACT

The protective host immune response to viral infections requires both effective innate and adaptive immune responses. Cross-talk between the two responses is coordinated by the chemokine network and professional APCs such as dendritic cells (DCs). In mice, subpopulations of myeloid DCs in peripheral tissues such as lungs and in blood express CX3CR1 depending on the inflammation state. We thus examined the host response of mice deficient in the chemokine receptor CX3CR1 to an intranasal vaccinia virus infection. CX3CR1-deficient mice displayed significantly more severe morbidity and mortality compared with control wild-type mice within 10 d following vaccinia virus infection. CX3CR1(-/-) mice had increased viral loads and a reduced T cell response compared with wild-type mice. Finally, an adoptive transfer of CX3CR1(+/+) DCs completely protected CX3CR1(-/-) mice to a previously lethal infection. This study therefore opens up the possibility of novel antiviral therapeutics targeting lung DC recruitment.


Subject(s)
Dendritic Cells/immunology , Lung Diseases/therapy , Receptors, Chemokine/immunology , Vaccinia virus/immunology , Adoptive Transfer , Animals , CX3C Chemokine Receptor 1 , Dendritic Cells/transplantation , Lung Diseases/immunology , Lung Diseases/virology , Mice , Mice, Knockout , Receptors, Chemokine/deficiency , T-Lymphocytes/immunology , Treatment Outcome , Viral Load
15.
Blood ; 118(8): 2128-37, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21715316

ABSTRACT

Detection of human Ag-specific T cells is limited by sensitivity and blood requirements. As dendritic cells (DCs) can potently stimulate T cells, we hypothesized that their induction in PBMCs in situ could link Ag processing and presentation to Ag-specific T-cell activation. To this end, unfractionated PBMCs (fresh or frozen) or whole blood were incubated for 48 hours with protein or peptide Ag together with different DC-activating agents to rapidly and sequentially induce, pulse, and mature DCs. DC activation was therefore lined up with Ag recognition by neighboring T cells, thus telescoping the sequential steps of T-cell activation. Efficient processing of protein Ags made prior knowledge of epitopes and HLA restrictions dispensable. While reducing stimulation time, manipulation and blood requirements, in situ DC induction specifically amplified Ag-specific T-cell responses (cytokine secretion, proliferation, CD137/CD154 up-regulation, and binding of peptide-HLA multimers). IL-1ß, although released by DCs, was also secreted in an Ag-specific fashion, thus providing an indirect biomarker of T-cell responses. These accelerated cocultured DC (acDC) assays offered a sensitive means with which to evaluate T-cell responses to viral and melanoma Ag vaccination, and may therefore find application for immune monitoring in viral, tumor, autoimmune, and transplantation settings.


Subject(s)
Antigens , Dendritic Cells/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation , Antigens/administration & dosage , Cancer Vaccines/administration & dosage , Cell Proliferation , Coculture Techniques , Cytokines/biosynthesis , Cytokines/blood , Dendritic Cells/cytology , Dendritic Cells/drug effects , Epitopes/administration & dosage , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , HLA Antigens/administration & dosage , Humans , Interleukin-4/pharmacology , Lymphocyte Activation , Melanoma/immunology , Melanoma/therapy , Melanoma-Specific Antigens/administration & dosage , Mice , Recombinant Proteins , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Vaccination
16.
Blood ; 117(10): 2975-83, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21193693

ABSTRACT

Recipient-specific regulatory T cells (rsTreg) can prevent graft-versus-host disease (GVHD) by inhibiting donor T-cell expansion after hematopoietic stem cell transplantation (HSCT) in mice. Importantly, in adult humans, because of thymus involution, immune reconstitution during the first months after HSCT relies on the peripheral expansion of donor T cells initially present in the graft. Therefore, we developed a mouse model of HSCT that excludes thymic output to study the effect of rsTreg on immune reconstitution derived from postthymic mature T cells present within the graft. We showed that GVHD prevention with rsTreg was associated with improvement of the limited immune reconstitution compared with GVHD mice in terms of cell numbers, activation phenotype, and cytokine production. We further demonstrated a preserved in vivo immune function using vaccinia infection and third-party skin-graft rejection models, suggesting that rsTreg immunosuppression was relatively specific of GVHD. Finally, we showed that rsTreg extensively proliferated during the first 2 weeks and then declined. In turn, donor Treg proliferated from day 15 on. Taken together, these results suggest that rsTreg GVHD prevention is associated with improved early immune reconstitution in a model that more closely approximates the biology of allogeneic HSCT in human adults.


Subject(s)
Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Animals , Disease Models, Animal , Graft vs Host Disease/immunology , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
17.
J Immunol ; 186(12): 6753-61, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21555534

ABSTRACT

Human NK cells comprise two main subsets, CD56(bright) and CD56(dim) cells, which differ in function, phenotype, and tissue localization. To further dissect the differentiation from CD56(bright) to CD56(dim) cells, we performed ex vivo and in vitro experiments demonstrating that the CD56(bright)CD16(+) cells are an intermediate stage of NK cell maturation. We observed that the maximal frequency of the CD56(bright)CD16(+) subset among NK cells, following unrelated cord blood transplantation, occurs later than this of the CD56(bright)CD16(-) subset. We next performed an extensive phenotypic and functional analysis of CD56(bright)CD16(+) cells in healthy donors, which displayed a phenotypic intermediary profile between CD56(bright)CD16(-) and CD56(dim)CD16(+) NK cells. We also demonstrated that CD56(bright)CD16(+) NK cells were fully able to kill target cells, both by Ab-dependent cell cytotoxicity (ADCC) and direct lysis, as compared with CD56(bright)CD16(-) cells. Importantly, in vitro differentiation experiments revealed that autologous T cells specifically encourage the differentiation from CD56(bright)CD16(-) to CD56(bright)CD16(+) cells. Finally, further investigations performed in elderly patients clearly showed that both CD56(bright)CD16(+) and CD56(dim)CD16(+) mature subsets were substantially increased in older individuals, whereas the CD56(bright)CD16(-) precursor subset was decreased. Altogether, these data provide evidence that the CD56(bright)CD16(+) NK cell subset is a functional intermediate between the CD56(bright) and CD56(dim) cells and is generated in the presence of autologous T CD3(+) cells.


Subject(s)
CD56 Antigen/analysis , Cell Differentiation/immunology , Killer Cells, Natural/cytology , Aged , CD3 Complex , Cord Blood Stem Cell Transplantation , GPI-Linked Proteins/immunology , Humans , Immunophenotyping , Killer Cells, Natural/immunology , Receptors, IgG/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tissue Donors
18.
Infect Dis Ther ; 12(2): 367-387, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36622633

ABSTRACT

Vaccines developed against SARS-CoV-2 have proven to be highly effective in preventing symptomatic infection. Similarly, prior infection with SARS-CoV-2 has been shown to provide substantial protection against reinfection. However, it has become apparent that the protection provided to an individual after either vaccination or infection wanes over time. Waning protection is driven by both waning immunity over time since vaccination or initial infection, and the evolution of new variants of SARS-CoV-2. Both antibody and T/B-cells levels have been investigated as potential correlates of protection post-vaccination or post-infection. The activity of antibodies and T/B-cells provide some potential insight into the underlying causes of waning protection. This review seeks to summarise what is currently known about the waning of protection provided by both vaccination and/or prior infection, as well as the current information on the respective antibody and T/B-cell responses.

19.
Vaccine ; 41(13): 2270-2279, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36870875

ABSTRACT

For intradermal (ID) immunisation, novel needle-based delivery systems have been proposed as a better alternative to the Mantoux method. However, the penetration depth of needles in the human skin and its effect on immune cells residing in the different layers of the skin has not been analyzed. A novel and user-friendly silicon microinjection needle (Bella-muTM) has been developed, which allows for a perpendicular injection due to its short needle length (1.4-1.8 mm) and ultrashort bevel. We aimed to characterize the performance of this microinjection needle in the context of the delivery of a particle-based outer membrane vesicle (OMV) vaccine using an ex vivo human skin explant model. We compared the needles of 1.4 and 1.8 mm with the conventional Mantoux method to investigate the depth of vaccine injection and the capacity of the skin antigen-presenting cell (APC) to phagocytose the OMVs. The 1.4 mm needle deposited the antigen closer to the epidermis than the 1.8 mm needle or the Mantoux method. Consequently, activation of epidermal Langerhans cells was significantly higher as determined by dendrite shortening. We found that five different subsets of dermal APCs are able to phagocytose the OMV vaccine, irrespective of the device or injection method. ID delivery using the 1.4 mm needle of a OMV-based vaccine allowed epidermal and dermal APC targeting, with superior activation of Langerhans cells. This study indicates that the use of a microinjection needle improves the delivery of vaccines in the human skin.


Subject(s)
Skin , Vaccines , Humans , Injections, Intradermal/methods , Microinjections , Drug Delivery Systems , Blister
20.
Vaccine ; 41(1): 10-14, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36446656

ABSTRACT

INTRODUCTION: Several studies have shown that intradermal vaccination leads to improved immune responses. In addition, lowering vaccine doses will reduce costs and therefore potentially increase coverage. To determine whether intradermal delivery enhances the antibody responses against the 13-valent pneumococcal conjugate vaccine (PCV13), we compared intradermally and intramuscularly vaccinated mice. METHODS: Mice were immunized with PCV13, either intradermally or intramuscularly and CFU-counts in the nasal tissue were determined three or seven days after intranasal colonization with a serotype 4 clinical strain. Antibody concentrations against all thirteen polysaccharides were measured in blood and mucosal samples using a fluorescent-bead-based multiplex immunoassay. RESULTS: Antibody levels in both serum and mucosal samples were higher in the intramuscularly vaccinated group as compared to the intradermally vaccinated group. No protection against S. pneumoniae intranasal colonization was observed for either vaccination route. CONCLUSIONS: Intradermal vaccination was inferior to intramuscular immunization in inducing serotype-specific antibodies.


Subject(s)
Antibody Formation , Pneumococcal Infections , Mice , Animals , Vaccines, Conjugate , Antibodies, Bacterial , Pneumococcal Vaccines , Streptococcus pneumoniae , Serogroup , Vaccination/methods , Pneumococcal Infections/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL