Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428395

ABSTRACT

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Subject(s)
Bacteria , Gastrointestinal Tract , Metagenome , Plasmids , Humans , Bacteria/genetics , Bacteroidetes/genetics , Feces/microbiology , Plasmids/genetics
2.
Cell ; 165(3): 520-1, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27104974

ABSTRACT

Pilus assembly in bacteria typically occurs by one of four pathways. In the study by Xu et al., the structures of 20 pilin subunits of human oral and gut Bacteroidales are elucidated, revealing a new pilin superfamily, assembled into pili by a distinct fifth pathway.


Subject(s)
Fimbriae Proteins , Fimbriae, Bacterial/chemistry , Bacteria/metabolism , Humans
3.
Cell ; 137(2): 321-31, 2009 Apr 17.
Article in English | MEDLINE | ID: mdl-19379697

ABSTRACT

The Bacteroides are a numerically dominant genus of the human intestinal microbiota. These organisms harbor a rare bacterial pathway for incorporation of exogenous fucose into capsular polysaccharides and glycoproteins. The infrequency of glycoprotein synthesis by bacteria prompted a more detailed analysis of this process. Here, we demonstrate that Bacteroides fragilis has a general O-glycosylation system. The proteins targeted for glycosylation include those predicted to be involved in protein folding, protein-protein interactions, peptide degradation as well as surface lipoproteins. Protein glycosylation is central to the physiology of B. fragilis and is necessary for the organism to competitively colonize the mammalian intestine. We provide evidence that general O-glycosylation systems are conserved among intestinal Bacteroides species and likely contribute to the predominance of Bacteroides in the human intestine.


Subject(s)
Bacterial Proteins/metabolism , Bacteroides fragilis/physiology , Glycoproteins/metabolism , Intestines/microbiology , Amino Acid Sequence , Animals , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Bacteroides/physiology , Germ-Free Life , Glycoproteins/analysis , Glycoproteins/genetics , Glycosylation , Humans , Male , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Polysaccharides, Bacterial/metabolism
4.
PLoS Genet ; 17(4): e1009541, 2021 04.
Article in English | MEDLINE | ID: mdl-33901198

ABSTRACT

The human gut microbiota is a dense microbial ecosystem with extensive opportunities for bacterial contact-dependent processes such as conjugation and Type VI secretion system (T6SS)-dependent antagonism. In the gut Bacteroidales, two distinct genetic architectures of T6SS loci, GA1 and GA2, are contained on Integrative and Conjugative Elements (ICE). Despite intense interest in the T6SSs of the gut Bacteroidales, there is only a superficial understanding of their evolutionary patterns, and of their dissemination among Bacteroidales species in human gut communities. Here, we combine extensive genomic and metagenomic analyses to better understand their ecological and evolutionary dynamics. We identify new genetic subtypes, document extensive intrapersonal transfer of these ICE to Bacteroidales species within human gut microbiomes, and most importantly, reveal frequent population fixation of these newly armed strains in multiple species within a person. We further show the distribution of each of the distinct T6SSs in human populations and show there is geographical clustering. We reveal that the GA1 T6SS ICE integrates at a minimal recombination site leading to their integration throughout genomes and their frequent interruption of genes, whereas the GA2 T6SS ICE integrate at one of three different tRNA genes. The exclusion of concurrent GA1 and GA2 T6SSs in individual strains is associated with intact T6SS loci and with an ICE-encoded gene. By performing a comprehensive analysis of mobile genetic elements (MGE) in co-resident Bacteroidales species in numerous human gut communities, we identify 74 MGE that transferred to multiple Bacteroidales species within individual gut microbiomes. We further show that only three other MGE demonstrate multi-species spread in human gut microbiomes to the degree demonstrated by the GA1 and GA2 ICE. These data underscore the ubiquity and dissemination of mobile T6SS loci within Bacteroidales communities and across human populations.


Subject(s)
Bacteroides/genetics , Genome, Bacterial/genetics , Interspersed Repetitive Sequences/genetics , Type VI Secretion Systems/genetics , Bacteroides/classification , Cluster Analysis , Ecosystem , Gastrointestinal Microbiome/genetics , Genomics , Geography , Humans , Microbiota/genetics , Type VI Secretion Systems/classification
5.
J Bacteriol ; 205(1): e0038922, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36475831

ABSTRACT

Bacteroides species can use fumarate and oxygen as terminal electron acceptors during cellular respiration. In the human gut, oxygen diffuses from intestinal epithelial cells supplying "nanaerobic" oxygen levels. Many components of the anaerobic respiratory pathway have been determined, but such analyses have not been performed for nanaerobic respiration. Here, we present genetic, biochemical, enzymatic, and mass spectrometry analyses to elucidate the nanaerobic respiratory pathway in Bacteroides fragilis. Under anaerobic conditions, the transfer of electrons from NADH to the quinone pool has been shown to be contributed by two enzymes, NQR and NDH2. We find that the activity contributed by each under nanaerobic conditions is 77 and 23%, respectively, similar to the activity levels under anaerobic conditions. Using mass spectrometry, we show that the quinone pool also does not differ under these two conditions and consists of a mixture of menaquinone-8 to menaquinone-11, with menaquinone-10 predominant under both conditions. Analysis of fumarate reductase showed that it is synthesized and active under anaerobic and nanaerobic conditions. Previous RNA sequencing data and new transcription reporter assays show that expression of the cytochrome bd oxidase gene does not change under these conditions. Under nanaerobic conditions, we find both increased CydA protein and increased cytochrome bd activity. Reduced-minus-oxidized spectra of membranes showed the presence of heme d when the bacteria were grown in the presence of protoporphyrin IX and iron under both anaerobic and nanaerobic conditions, suggesting that the active oxidase can be assembled with or without oxygen. IMPORTANCE By performing a comprehensive analysis of nanaerobic respiration in Bacteroides fragilis, we show that this organism maintains capabilities for anaerobic respiration on fumarate and nanaerobic respiration on oxygen simultaneously. The contribution of the two NADH:quinone oxidoreductases and the composition of the quinone pool are the same under both conditions. Fumarate reductase and cytochrome bd are both present, and which of these terminal enzymes is active in electron transfer depends on the availability of the final electron acceptor: fumarate or oxygen. The synthesis of cytochrome bd and fumarate reductase under both conditions serves as an adaptation to an environment with low oxygen concentrations so that the bacteria can maximize energy conservation during fluctuating environmental conditions or occupation of different spatial niches.


Subject(s)
Bacteroides fragilis , Succinate Dehydrogenase , Humans , Bacteroides fragilis/genetics , Bacteroides fragilis/metabolism , Anaerobiosis , Succinate Dehydrogenase/metabolism , Vitamin K 2 , NAD/metabolism , Electron Transport , Cytochromes/metabolism , Quinones/metabolism , Respiration , Oxygen/metabolism , Fumarates/metabolism
6.
PLoS Biol ; 18(5): e3000720, 2020 05.
Article in English | MEDLINE | ID: mdl-32453732

ABSTRACT

The type VI secretion system (T6SS) is a nanomachine used by many bacteria to drive a toxin-laden needle into other bacterial cells. Although the potential to influence bacterial competition is clear, the fitness impacts of wielding a T6SS are not well understood. Here we present a new agent-based model that enables detailed study of the evolutionary costs and benefits of T6SS weaponry during competition with other bacteria. Our model identifies a key problem with the T6SS. Because of its short range, T6SS activity becomes self-limiting, as dead cells accumulate in its way, forming "corpse barriers" that block further attacks. However, further exploration with the model presented a solution to this problem: if injected toxins can quickly lyse target cells in addition to killing them, the T6SS becomes a much more effective weapon. We tested this prediction with single-cell analysis of combat between T6SS-wielding Acinetobacter baylyi and T6SS-sensitive Escherichia coli. As predicted, delivery of lytic toxins is highly effective, whereas nonlytic toxins leave large patches of E. coli alive. We then analyzed hundreds of bacterial species using published genomic data, which suggest that the great majority of T6SS-wielding species do indeed use lytic toxins, indicative of a general principle underlying weapon evolution. Our work suggests that, in the T6SS, bacteria have evolved a disintegration weapon whose effectiveness often rests upon the ability to break up competitors. Understanding the evolutionary function of bacterial weapons can help in the design of probiotics that can both establish well and eliminate problem species.


Subject(s)
Antibiosis , Evolution, Molecular , Models, Biological , Type VI Secretion Systems/genetics , Acinetobacter , Escherichia coli , Microfluidics , Single-Cell Analysis
7.
Proc Natl Acad Sci U S A ; 117(39): 24484-24493, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32938803

ABSTRACT

Mechanistic studies of anaerobic gut bacteria have been hindered by the lack of a fluorescent protein system to track and visualize proteins and dynamic cellular processes in actively growing bacteria. Although underappreciated, many gut "anaerobes" are able to respire using oxygen as the terminal electron acceptor. The oxygen continually released from gut epithelial cells creates an oxygen gradient from the mucus layer to the anaerobic lumen [L. Albenberg et al., Gastroenterology 147, 1055-1063.e8 (2014)], with oxygen available to bacteria growing at the mucus layer. Here, we show that Bacteroides species are metabolically and energetically robust and do not mount stress responses in the presence of 0.10 to 0.14% oxygen, defined as nanaerobic conditions [A. D. Baughn, M. H. Malamy, Nature 427, 441-444 (2004)]. Taking advantage of this metabolic capability, we show that nanaerobic growth provides sufficient oxygen for the maturation of oxygen-requiring fluorescent proteins in Bacteroides species. Type strains of four different Bacteroides species show bright GFP fluorescence when grown nanaerobically versus anaerobically. We compared four different red fluorescent proteins and found that mKate2 yields the highest red fluorescence intensity in our assay. We show that GFP-tagged proteins can be localized in nanaerobically growing bacteria. In addition, we used time-lapse fluorescence microscopy to image dynamic type VI secretion system processes in metabolically active Bacteroides fragilis The ability to visualize fluorescently labeled Bacteroides and fluorescently linked proteins in actively growing nanaerobic gut symbionts ushers in an age of imaging analyses not previously possible in these bacteria.


Subject(s)
Bacteroides/metabolism , Gastrointestinal Microbiome , Aerobiosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides/classification , Bacteroides/genetics , Bacteroides/growth & development , Humans , Oxygen/metabolism , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism
8.
J Bacteriol ; 204(7): e0012222, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35735993

ABSTRACT

Three distinct genetic architectures (GAs) of Type VI secretion systems (T6SSs) have been described in gut Bacteroidales species, each with unique genes and characteristics. Unlike the GA3 T6SSs, potent antagonism has not yet been demonstrated for the GA1 or GA2 T6SSs. We previously showed that the GA2 T6SS loci are contained on integrative and conjugative elements and that there are five subtypes. Collectively, GA2 are the most prevalent Bacteroidales T6SSs in the human populations analyzed. In this study, we provide a comprehensive bioinformatic analysis of the three variable regions of GA2 T6SS loci, which encode toxic effector and immunity proteins. In total, we identified 63 distinct effectors encoded within 31 nonredundant GA2 loci, 18 of which do not have described motifs or predicted functions. We provide experimental evidence for toxin activity for four different GA2 effectors, showing that each functions only when present in the periplasm, and experimentally confirm their cognate immunity proteins. Our data demonstrate that each GA2 locus encodes at least three distinct effectors with targets in both the cytoplasm and the periplasm. The data also suggest that the effectors of a given locus are loaded onto the tube by different mechanisms, which may allow all three effectors encoded within a single GA2 locus with distinct antibacterial activity to be loaded onto a single T6 tube, increasing the antagonistic effect. IMPORTANCE Humans are colonized with many gut Bacteroidales species at high density, allowing for extensive opportunities for contact-dependent antagonism. To begin to understand the antagonistic potential of the GA2 T6SSs of the gut Bacteroidales, we performed bioinformatic and experimental analyses of the three divergent regions containing the toxin effector and immunity genes. We show that each GA2 T6SS locus encodes at least three distinct toxic effectors including toxins linked to Rhs and Hcp with cytoplasmic targets, and unlinked effectors with targets in the periplasm. The diversity and modality of effectors exceeds that of the GA1 or GA3 T6SS loci (M. J. Coyne, K. G. Roelofs, and L. E. Comstock, BMC Genomics 17:58, 2016, https://doi.org/10.1186/s12864-016-2377-z) and suggests that these T6SSs have the potential to be potent antibacterial weapons in the human gut.


Subject(s)
Type VI Secretion Systems , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroidetes/metabolism , Humans , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism
9.
Nature ; 533(7602): 255-9, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27111508

ABSTRACT

Cooperative phenotypes are considered central to the functioning of microbial communities in many contexts, including communication via quorum sensing, biofilm formation, antibiotic resistance, and pathogenesis. The human intestine houses a dense and diverse microbial community critical to health, yet we know little about cooperation within this important ecosystem. Here we test experimentally for evolved cooperation within the Bacteroidales, the dominant Gram-negative bacteria of the human intestine. We show that during growth on certain dietary polysaccharides, the model member Bacteroides thetaiotaomicron exhibits only limited cooperation. Although this organism digests these polysaccharides extracellularly, mutants lacking this ability are outcompeted. In contrast, we discovered a dedicated cross-feeding enzyme system in the prominent gut symbiont Bacteroides ovatus, which digests polysaccharide at a cost to itself but at a benefit to another species. Using in vitro systems and gnotobiotic mouse colonization models, we find that extracellular digestion of inulin increases the fitness of B. ovatus owing to reciprocal benefits when it feeds other gut species such as Bacteroides vulgatus. This is a rare example of naturally-evolved cooperation between microbial species. Our study reveals both the complexity and importance of cooperative phenotypes within the mammalian intestinal microbiota.


Subject(s)
Bacteroides/physiology , Biological Evolution , Gastrointestinal Microbiome/physiology , Symbiosis , Animals , Bacteroides/enzymology , Bacteroides/genetics , Dietary Carbohydrates/metabolism , Germ-Free Life , Glycoside Hydrolases/metabolism , Humans , In Vitro Techniques , Intestines/microbiology , Inulin/metabolism , Male , Mice
10.
Nucleic Acids Res ; 48(19): 11040-11053, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33045731

ABSTRACT

The genomes of gut Bacteroidales contain numerous invertible regions, many of which contain promoters that dictate phase-variable synthesis of surface molecules such as polysaccharides, fimbriae, and outer surface proteins. Here, we characterize a different type of phase-variable system of Bacteroides fragilis, a Type I restriction modification system (R-M). We show that reversible DNA inversions within this R-M locus leads to the generation of eight specificity proteins with distinct recognition sites. In vitro grown bacteria have a different proportion of specificity gene combinations at the expression locus than bacteria isolated from the mammalian gut. By creating mutants, each able to produce only one specificity protein from this region, we identified the R-M recognition sites of four of these S-proteins using SMRT sequencing. Transcriptome analysis revealed that the locked specificity mutants, whether grown in vitro or isolated from the mammalian gut, have distinct transcriptional profiles, likely creating different phenotypes, one of which was confirmed. Genomic analyses of diverse strains of Bacteroidetes from both host-associated and environmental sources reveal the ubiquity of phase-variable R-M systems in this phylum.


Subject(s)
Bacterial Proteins/metabolism , Bacteroides fragilis/enzymology , DNA Restriction-Modification Enzymes/metabolism , Gastrointestinal Microbiome , Animals , Bacterial Proteins/genetics , DNA Restriction-Modification Enzymes/genetics , Humans , Mice , Mutation , Transcriptome
11.
J Bacteriol ; 201(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30692177

ABSTRACT

Bacteroidales are the most abundant Gram-negative bacteria of the healthy human colonic microbiota, comprising nearly 50% of the colonic bacteria in many individuals. Numerous species and strains of gut Bacteroidales are present simultaneously at high concentrations in this ecosystem. Studies are revealing that gut Bacteroides has numerous antibacterial weapons to antagonize closely related members. In this study, we identify a new diffusible antibacterial toxin produced by Bacteroides fragilis 638R, designated BSAP-4. This is the fifth antibacterial toxin produced by this strain and the second toxin of this strain with a membrane attack complex/perforin domain (MACPF). We identify the target molecule of sensitive cells as a ß-barrel outer membrane protein (OMP) with calycin-like domains. As with other MACPF toxins, the gene encoding the target in sensitive strains is in the same genetic region as bsap-4 in producing strains. A comparison of B. fragilis strains showed there are two sensitive variants of this OMP that are 87% similar to each other and 50% similar to the resistant OMP. Unlike other MACPF toxins, there are numerous B. fragilis strains that harbor the resistant OMP without bsap-4 Several OMP variants from strains that are BSAP-4 resistant under the conditions of our assay confer BSAP-4 sensitivity to Bacteroides thetaiotaomicron when constitutively expressed. Using a reporter assay, we show that the BSAP-4 receptor gene is differentially expressed in sensitive and resistant strains leading to apparent BSAP-4 resistance under the conditions of our assay, despite harboring the BSAP-4 target gene.IMPORTANCE The intestinal microbiota is a diverse microbial ecosystem that provides numerous benefits to humans. The factors that govern its establishment and stability are just beginning to be elucidated. Identification and characterization of antimicrobial toxins produced by its members and their killing range are essential to understanding the role of antagonism in community composition and stability. Here, we identify a fifth antimicrobial toxin produced by a single Bacteroides fragilis strain and identify its target. The finding of such a large number of toxins that antagonize competing members suggests that this feature substantially contributes to the fitness of these bacteria. In addition, these toxins may have applications in genetically engineered gut bacteria to allow engraftment or to antagonize a potentially pathogenic member.


Subject(s)
Bacteriocins/metabolism , Bacteroides fragilis/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacteroides fragilis/genetics , Drug Resistance, Bacterial , Gene Expression Profiling , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
12.
Proc Natl Acad Sci U S A ; 113(13): 3627-32, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26951680

ABSTRACT

Type VI secretion systems (T6SSs) are multiprotein complexes best studied in Gram-negative pathogens where they have been shown to inhibit or kill prokaryotic or eukaryotic cells and are often important for virulence. We recently showed that T6SS loci are also widespread in symbiotic human gut bacteria of the order Bacteroidales, and that these T6SS loci segregate into three distinct genetic architectures (GA). GA1 and GA2 loci are present on conserved integrative conjugative elements (ICE) and are transferred and shared among diverse human gut Bacteroidales species. GA3 loci are not contained on conserved ICE and are confined to Bacteroides fragilis Unlike GA1 and GA2 T6SS loci, most GA3 loci do not encode identifiable effector and immunity proteins. Here, we studied GA3 T6SSs and show that they antagonize most human gut Bacteroidales strains analyzed, except for B. fragilis strains with the same T6SS locus. A combination of mutation analyses,trans-protection analyses, and in vitro competition assays, allowed us to identify novel effector and immunity proteins of GA3 loci. These proteins are not orthologous to known proteins, do not contain identified motifs, and most have numerous predicted transmembrane domains. Because the genes encoding effector and immunity proteins are contained in two variable regions of GA3 loci, GA3 T6SSs of the species B. fragilis are likely the source of numerous novel effector and immunity proteins. Importantly, we show that the GA3 T6SS of strain 638R is functional in the mammalian gut and provides a competitive advantage to this organism.


Subject(s)
Bacteroides fragilis/physiology , Bacteroidetes/physiology , Gastrointestinal Microbiome/physiology , Type VI Secretion Systems/physiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/physiology , Bacteroides fragilis/genetics , Bacteroides fragilis/immunology , Bacteroidetes/genetics , Bacteroidetes/immunology , Gastrointestinal Microbiome/immunology , Genes, Bacterial , Humans , Mice , Mutation , Type VI Secretion Systems/genetics , Type VI Secretion Systems/immunology
13.
J Bacteriol ; 198(18): 2396-8, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27402626

ABSTRACT

Bacteroides species can metabolize numerous plant polysaccharides and host glycans present in the mammalian gut. The regulatory systems governing the induction of particular polysaccharide utilization loci when the cognate glycan is present are known, but how expression is repressed when a higher-priority glycan is present is largely unknown. In this issue of the Journal of Bacteriology, Cao et al. (J. Bacteriol. 198:2410-2418, 2016, http://dx.doi.org/10.1128/JB.00381-16) reveal a conserved mechanism in Bacteroides whereby antisense small RNAs (sRNA) repress expression of genes involved in utilization of host glycans.


Subject(s)
Bacteroides/metabolism , Gene Expression Regulation, Bacterial/physiology , Polysaccharides/metabolism , RNA Interference , RNA, Bacterial/metabolism , Bacteroides/genetics , RNA, Small Interfering
14.
BMC Genomics ; 17: 58, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26768901

ABSTRACT

BACKGROUND: Type VI secretion systems (T6SSs) are contact-dependent antagonistic systems employed by Gram negative bacteria to intoxicate other bacteria or eukaryotic cells. T6SSs were recently discovered in a few Bacteroidetes strains, thereby extending the presence of these systems beyond Proteobacteria. The present study was designed to analyze in a global nature the diversity, abundance, and properties of T6SSs in the Bacteroidales, the most predominant Gram negative bacterial order of the human gut. RESULTS: By performing extensive bioinformatics analyses and creating hidden Markov models for Bacteroidales Tss proteins, we identified 130 T6SS loci in 205 human gut Bacteroidales genomes. Of the 13 core T6SS proteins of Proteobacteria, human gut Bacteroidales T6SS loci encode orthologs of nine, and an additional five other core proteins not present in Proteobacterial T6SSs. The Bacteroidales T6SS loci segregate into three distinct genetic architectures with extensive DNA identity between loci of a given genetic architecture. We found that divergent DNA regions of a genetic architecture encode numerous types of effector and immunity proteins and likely include new classes of these proteins. TheT6SS loci of genetic architecture 1 are contained on highly similar integrative conjugative elements (ICEs), as are the T6SS loci of genetic architecture 2, whereas the T6SS loci of genetic architecture 3 are not and are confined to Bacteroides fragilis. Using collections of co-resident Bacteroidales strains from human subjects, we provide evidence for the transfer of genetic architecture 1 T6SS loci among co-resident Bacteroidales species in the human gut. However, we also found that established ecosystems can harbor strains with distinct T6SS of all genetic architectures. CONCLUSIONS: This is the first study to comprehensively analyze of the presence and diversity of T6SS loci within an order of bacteria and to analyze T6SSs of bacteria from a natural community. These studies demonstrate that more than half of our gut Bacteroidales, equivalent to about » of the bacteria of this ecosystem, encode T6SSs. The data reveal several novel properties of these systems and suggest that antagonism between or distributed defense among these abundant intestinal bacteria may be common in established human gut communities.


Subject(s)
Bacteroides fragilis/genetics , Gastrointestinal Microbiome/genetics , Type VI Secretion Systems/genetics , Bacterial Proteins/genetics , Humans , Interspersed Repetitive Sequences/genetics
15.
PLoS Biol ; 11(7): e1001610, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23874157

ABSTRACT

While the human gut microbiota are suspected to produce diffusible small molecules that modulate host signaling pathways, few of these molecules have been identified. Species of Bacteroides and their relatives, which often comprise >50% of the gut community, are unusual among bacteria in that their membrane is rich in sphingolipids, a class of signaling molecules that play a key role in inducing apoptosis and modulating the host immune response. Although known for more than three decades, the full repertoire of Bacteroides sphingolipids has not been defined. Here, we use a combination of genetics and chemistry to identify the sphingolipids produced by Bacteroides fragilis NCTC 9343. We constructed a deletion mutant of BF2461, a putative serine palmitoyltransferase whose yeast homolog catalyzes the committed step in sphingolipid biosynthesis. We show that the Δ2461 mutant is sphingolipid deficient, enabling us to purify and solve the structures of three alkaline-stable lipids present in the wild-type strain but absent from the mutant. The first compound was the known sphingolipid ceramide phosphorylethanolamine, and the second was its corresponding dihydroceramide base. Unexpectedly, the third compound was the glycosphingolipid α-galactosylceramide (α-GalCer(Bf)), which is structurally related to a sponge-derived sphingolipid (α-GalCer, KRN7000) that is the prototypical agonist of CD1d-restricted natural killer T (iNKT) cells. We demonstrate that α-GalCer(Bf) has similar immunological properties to KRN7000: it binds to CD1d and activates both mouse and human iNKT cells both in vitro and in vivo. Thus, our study reveals BF2461 as the first known member of the Bacteroides sphingolipid pathway, and it indicates that the committed steps of the Bacteroides and eukaryotic sphingolipid pathways are identical. Moreover, our data suggest that some Bacteroides sphingolipids might influence host immune homeostasis.


Subject(s)
Bacteroides fragilis/metabolism , Galactosylceramides/metabolism , Animals , Bacteroides fragilis/immunology , Bacteroides fragilis/physiology , Cells, Cultured , Humans , Mice , Mutation , Natural Killer T-Cells/metabolism
16.
Mol Microbiol ; 94(6): 1361-74, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25339613

ABSTRACT

Bacteroidales are the most abundant Gram-negative bacteria of the human intestinal microbiota comprising more than half of the bacteria in many individuals. Some of the factors that these bacteria use to establish and maintain themselves in this ecosystem are beginning to be identified. However, ecological competition, especially interference competition where one organism directly harms another, is largely unexplored. To begin to understand the relevance of this ecological principle as it applies to these abundant gut bacteria and factors that may promote such competition, we screened Bacteroides fragilis for the production of antimicrobial molecules. We found that the production of extracellularly secreted antimicrobial molecules is widespread in this species. The first identified molecule, described in this manuscript, contains a membrane attack complex/perforin (MACPF) domain present in host immune molecules that kill bacteria and virally infected cells by pore formation, and mutations affecting key residues of this domain abrogated its activity. This antimicrobial molecule, termed BSAP-1, is secreted from the cell in outer membrane vesicles and no additional proteins are required for its secretion, processing or immunity of the producing cell. This study provides the first insight into secreted molecules that promote competitive interference among Bacteroidales strains of the human gut.


Subject(s)
Anti-Infective Agents/metabolism , Bacterial Proteins/metabolism , Bacteroides fragilis/growth & development , Intestines/microbiology , Anti-Infective Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacteroides fragilis/classification , Bacteroides fragilis/genetics , Complement Membrane Attack Complex/chemistry , Genome, Bacterial , Humans , Intestines/immunology , Mutagenesis, Site-Directed , Perforin/chemistry
18.
Mol Microbiol ; 88(4): 772-83, 2013 May.
Article in English | MEDLINE | ID: mdl-23551589

ABSTRACT

The human gut symbiont Bacteroides fragilis has a general protein O-glycosylation system in which numerous extracytoplasmic proteins are glycosylated at a three amino acid motif. In B. fragilis, protein glycosylation is a fundamental and essential property as mutants with protein glycosylation defects have impaired growth and are unable to competitively colonize the mammalian intestine. In this study, we analysed the phenotype of B. fragilis mutants with defective protein glycosylation and found that the glycan added to proteins is comprised of a core glycan and an outer glycan. The genetic region encoding proteins for the synthesis of the outer glycan is conserved within a Bacteroides species but divergent between species. Unlike the outer glycan, an antiserum raised to the core glycan reacted with all Bacteroidetes species tested, from all four classes of the phylum. We found that diverse Bacteroidetes species synthesize numerous glycoproteins and glycosylate proteins at the same three amino acid motif. The wide-spread conservation of this protein glycosylation system within the phylum suggests that this system of post-translational protein modification evolved early, before the divergence of the four classes of Bacteroidetes, and has been maintained due to its physiological importance to the diverse species of this phylum.


Subject(s)
Bacterial Proteins/metabolism , Bacteroidetes/genetics , Bacteroidetes/metabolism , Glycoproteins/metabolism , Polysaccharides/metabolism , Conserved Sequence , Genes, Bacterial , Glycosylation , Metabolic Networks and Pathways
20.
Cell Host Microbe ; 32(6): 794-803, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870897

ABSTRACT

Most bacteria live in communities, often with closely related strains and species with whom they must compete for space and resources. Consequently, bacteria have acquired or evolved mechanisms to antagonize competitors through the production of antibacterial toxins. Similar to bacterial systems that combat phage infection and mechanisms to thwart antibiotics, bacteria have also acquired and evolved features to protect themselves from antibacterial toxins. Just as there is a large body of research identifying and characterizing antibacterial proteins and toxin delivery systems, studies of bacterial mechanisms to resist and survive assault from competitors' weapons have also expanded tremendously. Emerging data are beginning to reveal protective processes and mechanisms that are as diverse as the toxins themselves. Protection against antibacterial toxins can be acquired by horizontal gene transfer, receptor or target alteration, induction of protective functions, physical barriers, and other diverse processes. Here, we review recent studies in this rapidly expanding field.


Subject(s)
Bacteria , Bacterial Toxins , Bacteria/immunology , Bacteria/genetics , Bacterial Toxins/metabolism , Bacterial Toxins/immunology , Gene Transfer, Horizontal , Humans , Microbial Viability , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL