Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Synchrotron Radiat ; 29(Pt 4): 957-968, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35787561

ABSTRACT

The newly constructed time-resolved atomic, molecular and optical science instrument (TMO) is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per-pulse energy as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators power a soft X-ray free-electron laser with the new variable-gap undulator section. With this flexible light source, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports atomic, molecular and optical, strong-field and nonlinear science and will also host a designated new dynamic reaction microscope with a sub-micrometer X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program.

2.
Appl Opt ; 60(8): 2288-2303, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33690328

ABSTRACT

The advanced radiographic capability (ARC) laser system, part of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, is a short-pulse laser capability integrated into the NIF. The ARC is designed to provide adjustable pulse lengths of ∼1-38ps in four independent beamlets, each with energies up to 1 kJ (depending on pulse duration). A detailed model of the ARC lasers has been developed that predicts the time- and space-resolved focal spots on target for each shot. Measurements made to characterize static and dynamic wavefront characteristics of the ARC are important inputs to the code. Modeling has been validated with measurements of the time-integrated focal spot at the target chamber center (TCC) at low power, and the space-integrated pulse duration at high power, using currently available diagnostics. These simulations indicate that each of the four ARC beamlets achieves a peak intensity on target of up to a few 1018W/cm2.

SELECTION OF CITATIONS
SEARCH DETAIL