Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 111(4): 654-667, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38471507

ABSTRACT

Allele-specific methylation (ASM) is an epigenetic modification whereby one parental allele becomes methylated and the other unmethylated at a specific locus. ASM is most often driven by the presence of nearby heterozygous variants that influence methylation, but also occurs somatically in the context of genomic imprinting. In this study, we investigate ASM using publicly available single-cell reduced representation bisulfite sequencing (scRRBS) data on 608 B cells sampled from six healthy B cell samples and 1,230 cells from 11 chronic lymphocytic leukemia (CLL) samples. We developed a likelihood-based criterion to test whether a CpG exhibited ASM, based on the distributions of methylated and unmethylated reads both within and across cells. Applying our likelihood ratio test, 65,998 CpG sites exhibited ASM in healthy B cell samples according to a Bonferroni criterion (p < 8.4 × 10-9), and 32,862 CpG sites exhibited ASM in CLL samples (p < 8.5 × 10-9). We also called ASM at the sample level. To evaluate the accuracy of our method, we called heterozygous variants from the scRRBS data, which enabled variant-based calls of ASM within each cell. Comparing sample-level ASM calls to the variant-based measures of ASM, we observed a positive predictive value of 76%-100% across samples. We observed high concordance of ASM across samples and an overrepresentation of ASM in previously reported imprinted genes and genes with imprinting binding motifs. Our study demonstrates that single-cell bisulfite sequencing is a potentially powerful tool to investigate ASM, especially as studies expand to increase the number of samples and cells sequenced.


Subject(s)
DNA Methylation , Leukemia, Lymphocytic, Chronic, B-Cell , Sulfites , Humans , DNA Methylation/genetics , Alleles , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Likelihood Functions , Genomic Imprinting/genetics , CpG Islands/genetics
2.
Am J Hum Genet ; 110(2): 273-283, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36649705

ABSTRACT

This study sought to examine the association between DNA methylation and body mass index (BMI) and the potential of BMI-associated cytosine-phosphate-guanine (CpG) sites to provide information about metabolic health. We pooled summary statistics from six trans-ethnic epigenome-wide association studies (EWASs) of BMI representing nine cohorts (n = 17,034), replicated these findings in the Women's Health Initiative (WHI, n = 4,822), and developed an epigenetic prediction score of BMI. In the pooled EWASs, 1,265 CpG sites were associated with BMI (p < 1E-7) and 1,238 replicated in the WHI (FDR < 0.05). We performed several stratified analyses to examine whether these associations differed between individuals of European and African descent, as defined by self-reported race/ethnicity. We found that five CpG sites had a significant interaction with BMI by race/ethnicity. To examine the utility of the significant CpG sites in predicting BMI, we used elastic net regression to predict log-normalized BMI in the WHI (80% training/20% testing). This model found that 397 sites could explain 32% of the variance in BMI in the WHI test set. Individuals whose methylome-predicted BMI overestimated their BMI (high epigenetic BMI) had significantly higher glucose and triglycerides and lower HDL cholesterol and LDL cholesterol compared to accurately predicted BMI. Individuals whose methylome-predicted BMI underestimated their BMI (low epigenetic BMI) had significantly higher HDL cholesterol and lower glucose and triglycerides. This study confirmed 553 and identified 685 CpG sites associated with BMI. Participants with high epigenetic BMI had poorer metabolic health, suggesting that the overestimation may be driven in part by cardiometabolic derangements characteristic of metabolic syndrome.


Subject(s)
Epigenesis, Genetic , Epigenome , Humans , Female , Body Mass Index , Epigenesis, Genetic/genetics , Obesity/genetics , Cholesterol, HDL/genetics , Genome-Wide Association Study , DNA Methylation/genetics , Epigenomics , Triglycerides , CpG Islands/genetics
3.
Mol Psychiatry ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977918

ABSTRACT

Cancer patients are commonly affected by fatigue. Herein, we sought to examine epigenetic modifications (i.e., DNA methylation) related to fatigue in peripheral blood among patients during and after treatment for head and neck cancer (HNC). Further, we determined whether these modifications were associated with gene expression and inflammatory protein markers, which we have previously linked to fatigue in HNC. This prospective, longitudinal study enrolled eligible patients with data collected at pre-radiotherapy, end of radiotherapy, and six months and one-year post-radiotherapy. Fatigue data were reported by patients using the Multidimensional Fatigue Inventory (MFI)-20. DNA methylation (Illumina MethylationEPIC) and gene expression (Applied Biosystems Clariom S) arrays and assays for seven inflammatory markers (R&D Systems multiplex) were performed. Mixed models and enrichment analyses were applied to establish the associations. A total of 386 methylation loci were associated with fatigue among 145 patients (False Discovery Rate [FDR] < 0.05). Enrichment analyses showed the involvement of genes related to immune and inflammatory responses, insulin and lipid metabolism, neuropsychological disorders, and tumors. We further identified 16 methylation-gene expression pairs (FDR < 0.05), which were linked to immune and inflammatory responses and lipid metabolism. Ninety-one percent (351) of the 386 methylation loci were also significantly associated with inflammatory markers (e.g., interleukin 6, c-reactive protein; FDR < 0.05), which further mediated the association between methylation and fatigue (FDR < 0.05). These data suggest that epigenetic modifications associated with inflammation and immunometabolism, in conjunction with relevant gene expression and protein markers, are potential targets for treating fatigue in HNC patients. The findings also merit future prospective studies in other cancer populations as well as interventional investigations.

4.
Psychosom Med ; 86(3): 137-145, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38345302

ABSTRACT

OBJECTIVE: Psychosocial stressors have been linked with accelerated biological aging in adults; however, few studies have examined stressors across the life course in relation to biological aging. METHODS: In 359 individuals (57% White, 34% Black) from the Child Health and Development Studies Disparities study, economic (income, education, financial strain), social (parent-child relations, caretaker responsibilities) and traumatic (death of a sibling or child, violence exposure) stressors were assessed at multiple time points (birth and ages 9, 15, and 50 years). Experiences of major discrimination were assessed at age 50. Life period stress scores were then assessed as childhood (birth-age 15 years) and adulthood (age 50 years). At age 50 years, participants provided blood samples, and DNA methylation was assessed with the EPIC BeadChip. Epigenetic age was estimated using six epigenetic clocks (Horvath, Hannum, Skin and Blood age, PhenoAge, GrimAge, Dunedin Pace of Aging). Age acceleration was determined using residuals from regressing chronologic age on each of the epigenetic age metrics. Telomere length was assessed using the quantitative polymerase chain reaction-based methods. RESULTS: In linear regression models adjusted for race and gender, total life stress, and childhood and adult stress independently predicted accelerated aging based on GrimAge and faster pace of aging based on the DunedinPace. Associations were attenuated after adjusting for smoking status. In sex-stratified analyses, greater childhood stress was associated with accelerated epigenetic aging among women but not men. No associations were noted with telomere length. CONCLUSIONS: We found that cumulative stressors across the life course were associated with accelerated epigenetic age, with differences by sex (e.g., accelerated among women). Further research of this association in large and diverse samples is needed.


Subject(s)
Life Change Events , Stress, Psychological , Adult , Child , Humans , Female , Middle Aged , Adolescent , Aging , DNA Methylation , Educational Status , Epigenesis, Genetic
5.
Environ Res ; 220: 115146, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36566966

ABSTRACT

BACKGROUND: An industrial accident led to the widespread contamination of polybrominated biphenyl (PBB), a flame retardant, into the food system in Michigan in the 1970's. PBB continues to be detected in Michiganders' blood some forty years later. It is necessary to understand the elimination rate and half-life of PBB because it may provide clues on how to hasten the elimination of it from the human body. METHODS: Serum samples were taken from young adult and adult participants of the Michigan PBB registry from 1974 to 2019. A single compartment model was assumed for the elimination rate for PBB-153 in young adults and adults (≥16 years). Generalized linear mixed models were used to estimate the average elimination rate of PBB-153 and allowed for a random intercept and slope for the time between measurements. Models were adjusted for age at exposure, body mass index (BMI) at initial measurement, and smoking. Models were also stratified by demographic characteristics. RESULTS: In total, 1974 participants contributed 4768 samples over a forty-year span. The median initial PBB-153 level was 1.542 parts per billion (ppb) (Range: 0.001-1442.48 ppb). The adjusted median participant-specific half-life for PBB-153 was 12.23 years. The half-life of PBB-153 was lengthened by higher initial PBB level (∼1.5 years), younger age at exposure (∼5.4 years), higher BMI (∼1.0 years), and increased gravidity (∼7.3 years). Additionally, the half-life of PBB-153 was shortened by smoking status (∼-2.8 years) and breastfeeding (∼-3.5 years). CONCLUSIONS: Consistent with previous studies, PBB-153 has been demonstrated to have a long half-life in the human body and may be modified by some demographic characteristics. These updated estimates of half-life will further support evaluation of health effects associated with PBB exposure. Investigations into mechanisms to accelerate elimination and reduce body burdens of PBB-153, especially those related to body weight, are needed.


Subject(s)
Environmental Pollutants , Polybrominated Biphenyls , Female , Young Adult , Humans , Child, Preschool , Michigan , Body Mass Index
6.
Breast Cancer Res Treat ; 191(3): 653-663, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34978015

ABSTRACT

BACKGROUND: Social exposures may drive epigenetic alterations that affect racial disparities in breast cancer outcomes. This study examined the association between neighborhood-level factors and DNA methylation in non-Hispanic Black and White women diagnosed with breast cancer. METHODS: Genome-wide DNA methylation was measured using the EPIC array in the tumor tissue of 96 women. Linear regression models were used to examine the association between nine neighborhood-level factors and methylation, regressing ß values for each cytosine-phosphate guanine dinucleotide (CpG) site on neighborhood-level factors while adjusting for covariates. Neighborhood data were obtained from the Opportunity Atlas. We used a false discovery rate (FDR) threshold < 0.05, and for CpGs below this threshold, we examined interactions with race. We employed multivariable Cox proportional-hazards models to estimate whether aberrant methylation was associated with all-cause mortality. RESULTS: 26 of the CpG sites were associated with job density or college education (FDR < 0.05). Further exploration of these 26 CpG sites revealed no interactions by race, but a single probe in TMEM204 was associated with all-cause mortality. CONCLUSION: We identified novel associations between neighborhood-level factors and the breast tumor DNA methylome. Our data are the first to show that dysregulation in neighborhood associated CpG sites may be associated with all-cause mortality. Neighborhood-level factors may contribute to differential tumor methylation in genes related to tumor progression and metastasis. This contributes to the increasing body of evidence that area-level factors (such as neighborhood characteristics) may play an important role in cancer disparities through modulation of the breast tumor epigenome.


Subject(s)
Breast Neoplasms , Epigenomics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , CpG Islands/genetics , DNA Methylation , Epigenesis, Genetic , Female , Genome-Wide Association Study , Humans , Neighborhood Characteristics
7.
Environ Res ; 212(Pt C): 113360, 2022 09.
Article in English | MEDLINE | ID: mdl-35500859

ABSTRACT

Epigenetic mechanisms may underlie air pollution-health outcome associations. We estimated gaseous air pollutant-DNA methylation (DNAm) associations using twelve subpopulations within Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) cohorts (n = 8397; mean age 61.3 years; 83% female; 46% African-American, 46% European-American, 8% Hispanic/Latino). We used geocoded participant address-specific mean ambient carbon monoxide (CO), nitrogen oxides (NO2; NOx), ozone (O3), and sulfur dioxide (SO2) concentrations estimated over the 2-, 7-, 28-, and 365-day periods before collection of blood samples used to generate Illumina 450 k array leukocyte DNAm measurements. We estimated methylome-wide, subpopulation- and race/ethnicity-stratified pollutant-DNAm associations in multi-level, linear mixed-effects models adjusted for sociodemographic, behavioral, meteorological, and technical covariates. We combined stratum-specific estimates in inverse variance-weighted meta-analyses and characterized significant associations (false discovery rate; FDR<0.05) at Cytosine-phosphate-Guanine (CpG) sites without among-strata heterogeneity (PCochran's Q > 0.05). We attempted replication in the Cooperative Health Research in Region of Augsburg (KORA) study and Normative Aging Study (NAS). We observed a -0.3 (95% CI: -0.4, -0.2) unit decrease in percent DNAm per interquartile range (IQR, 7.3 ppb) increase in 28-day mean NO2 concentration at cg01885635 (chromosome 3; regulatory region 290 bp upstream from ZNF621; FDR = 0.03). At intragenic sites cg21849932 (chromosome 20; LIME1; intron 3) and cg05353869 (chromosome 11; KLHL35; exon 2), we observed a -0.3 (95% CI: -0.4, -0.2) unit decrease (FDR = 0.04) and a 1.2 (95% CI: 0.7, 1.7) unit increase (FDR = 0.04), respectively, in percent DNAm per IQR (17.6 ppb) increase in 7-day mean ozone concentration. Results were not fully replicated in KORA and NAS. We identified three CpG sites potentially susceptible to gaseous air pollution-induced DNAm changes near genes relevant for cardiovascular and lung disease. Further harmonized investigations with a range of gaseous pollutants and averaging durations are needed to determine the effect of gaseous air pollutants on DNA methylation and ultimately gene expression.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Adult , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , DNA Methylation , Epigenome , Female , Humans , Male , Middle Aged , Nitrogen Dioxide/analysis , Ozone/analysis , Ozone/toxicity , Particulate Matter/analysis
8.
Genet Epidemiol ; 44(2): 148-158, 2020 03.
Article in English | MEDLINE | ID: mdl-31737926

ABSTRACT

Recent technological and methodological developments have enabled the use of array-based DNA methylation data to call copy number variants (CNVs). ChAMP, Conumee, and cnAnalysis450k are popular methods currently used to call CNVs using methylation data. However, so far, no studies have analyzed the reliability of these methods using real samples. Data from a cohort of individuals with genotype and DNA methylation data generated using the HumanMethylation450 and MethylationEPIC BeadChips were used to assess the consistency between the CNV calls generated by methylation and genotype data. We also took advantage of repeated measures of methylation data collected from the same individuals to compare the reliability of CNVs called by ChAMP, Conumee, and cnAnalysis450k for both the methylation arrays. ChAMP identified more CNVs than Conumee and cnAnalysis450k for both the arrays and, as a consequence, had a higher overlap (~62%) with the calls from the genotype data. However, all methods had relatively low reliability. For the MethylationEPIC array, Conumee had the highest reliability (57.6%), whereas for the HumanMethylation450 array, cnAnalysis450k had the highest reliability (43.0%). Overall, the MethylationEPIC array provided significant gains in reliability for CNV calling over the HumanMethylation450 array but not for overlap with CNVs called using genotype data.


Subject(s)
DNA Copy Number Variations/genetics , DNA Methylation/genetics , Adult , Cohort Studies , Female , Genotype , Humans , Reproducibility of Results
9.
Cancer ; 127(18): 3361-3371, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34027995

ABSTRACT

BACKGROUND: The authors measured epigenetic age acceleration (EAA) during and after cancer treatment and its association with inflammation and fatigue, which is a debilitating symptom in patients with cancer. METHODS: Patients who had head and neck cancer without distant metastases were assessed before, immediately after, and at 6 months and 12 months postradiotherapy. Blood DNA methylation was assessed using a proprietary bead chip (the Illumina MethylationEPIC BeadChip). EAA was calculated using the Levine epigenetic clock (DNAmPhenoAge), adjusted for chronological age. Fatigue was assessed using the Multidimensional Fatigue Inventory-20. Inflammatory markers were measured using standard techniques. RESULTS: Most patients (N = 133) were men, White, had advanced disease, and received concurrent chemoradiation. EAA changes over time were significant, with the largest increase (4.9 years) observed immediately after radiotherapy (P < .001). Increased EAA was associated with elevated fatigue (P = .003) over time, and patients who had severe fatigue experienced 3.1 years higher EAA than those who had low fatigue (P < .001), which was more prominent (5.6 years; P = .018) for patients who had human papillomavirus-unrelated disease at 12 months posttreatment. EAA was also positively associated with inflammatory markers, including C-reactive protein (CRP) and interleukin-6 (IL-6), over time (P < .001), and patients who had high CRP and IL-6 levels exhibited increases of 4.6 and 5.9 years, respectively, in EAA compared with those who had low CRP and IL-6 levels (P < .001). CRP and IL-6 mediated the association between EAA and fatigue (CRP: 95% CI, 0.060-0.279; IL-6: 95% CI, 0.024-0.220). CONCLUSIONS: Patients with head and neck cancer experienced increased EAA, especially immediately after treatment completion. EAA was associated with greater fatigue and inflammation, including 1 year after treatment. Inflammation may be a target to reduce the impact of age acceleration on poor functional outcomes.


Subject(s)
Epigenesis, Genetic , Head and Neck Neoplasms , Acceleration , Fatigue/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Humans , Inflammation/genetics , Inflammation/metabolism , Longitudinal Studies , Male
10.
Support Care Cancer ; 29(6): 3173-3182, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33078326

ABSTRACT

PURPOSE: Recent evidence supports a key role of gut microbiome in brain health. We conducted a pilot study to assess associations of gut microbiome with cancer-related fatigue and explore the associations with DNA methylation changes. METHODS: Self-reported Multidimensional Fatigue Inventory and stool samples were collected at pre-radiotherapy and one-month post-radiotherapy in patients with head and neck cancer. Gut microbiome data were obtained by sequencing the 16S ribosomal ribonucleic acid gene. DNA methylation changes in the blood were assessed using Illumina Methylation EPIC BeadChip. RESULTS: We observed significantly different gut microbiota patterns among patients with high vs. low fatigue across time. This pattern was characterized by low relative abundance in short-chain fatty acid-producing taxa (family Ruminococcaceae, genera Subdoligranulum and Faecalibacterium; all p < 0.05), with high abundance in taxa associated with inflammation (genera Family XIII AD3011 and Erysipelatoclostridium; all p < 0.05) for high-fatigue group. We identified nine KEGG Orthology pathways significantly different between high- vs. low-fatigue groups over time (all p < 0.001), including pathways related to fatty acid synthesis and oxidation, inflammation, and brain function. Gene set enrichment analysis (GSEA) was performed on the top differentially methylated CpG sites that were associated with the taxa and fatigue. All biological processes from the GSEA were related to immune responses and inflammation (FDR < 0.05). CONCLUSIONS: Our results suggest different patterns of the gut microbiota in cancer patients with high vs. low fatigue. Results from functional pathways and DNA methylation analyses indicate that inflammation is likely to be the major driver in the gut-brain axis for cancer-related fatigue.


Subject(s)
Epigenesis, Genetic/genetics , Fatigue/etiology , Gastrointestinal Microbiome/physiology , Neoplasms/complications , Fatigue/pathology , Female , Humans , Male , Middle Aged , Neoplasms/genetics , Pilot Projects
11.
Environ Res ; 198: 111211, 2021 07.
Article in English | MEDLINE | ID: mdl-33895111

ABSTRACT

BACKGROUND: Short-duration exposure to ambient particulate matter (PM) air pollution is associated with cardiac autonomic dysfunction and prolonged ventricular repolarization. However, associations with sub-chronic exposures to coarser particulates are relatively poorly characterized as are molecular mechanisms underlying their potential relationships with cardiovascular disease. MATERIALS AND METHODS: We estimated associations between monthly mean concentrations of PM < 10 µm and 2.5-10 µm in diameter (PM10; PM2.5-10) with time-domain measures of heart rate variability (HRV) and QT interval duration (QT) among U.S. women and men in the Women's Health Initiative and Atherosclerosis Risk in Communities Study (nHRV = 82,107; nQT = 76,711). Then we examined mediation of the PM-HRV and PM-QT associations by DNA methylation (DNAm) at three Cytosine-phosphate-Guanine (CpG) sites (cg19004594, cg24102420, cg12124767) with known sensitivity to monthly mean PM concentrations in a subset of the participants (nHRV = 7,169; nQT = 6,895). After multiply imputing missing PM, electrocardiographic and covariable data, we estimated associations using attrition-weighted, linear, mixed, longitudinal models adjusting for sociodemographic, behavioral, meteorological, and clinical characteristics. We assessed mediation by estimating the proportions of PM-HRV and PM-QT associations mediated by DNAm. RESULTS: We found little evidence of PM-HRV association, PM-QT association, or mediation by DNAm. CONCLUSIONS: The findings suggest that among racially/ethnically and environmentally diverse U.S. populations, sub-chronic exposures to coarser particulates may not exert appreciable, epigenetically mediated effects on cardiac autonomic function or ventricular repolarization. Further investigation in better-powered studies is warranted, with additional focus on shorter duration exposures to finer particulates and non-electrocardiographic outcomes among relatively susceptible populations.


Subject(s)
Air Pollutants , Air Pollution , Atherosclerosis , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Atherosclerosis/chemically induced , Atherosclerosis/epidemiology , Atherosclerosis/genetics , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Male , Particulate Matter/analysis , Particulate Matter/toxicity , Women's Health
12.
Compr Psychiatry ; 107: 152236, 2021 05.
Article in English | MEDLINE | ID: mdl-33721583

ABSTRACT

Schizophrenia (SCZ) is an etiologically heterogeneous disease with genetic and environmental risk factors (e.g., Toxoplasma gondii infection) differing among affected individuals. Distinguishing such risk factors may point to differences in pathophysiological pathways and facilitate the discovery of individualized treatments. Toxoplasma gondii (TOXO) has been implicated in increasing the risk of schizophrenia. To determine whether TOXO-positive individuals with SCZ have a different polygenic risk burden than uninfected people, we applied the SCZ polygenic risk score (SCZ-PRS) derived from the Psychiatric GWAS Consortium separately to the TOXO-positive and TOXO-negative subjects with the diagnosis of SCZ as the outcome variable. The SCZ-PRS does not include variants in the major histocompatibility complex. Of 790 subjects assessed for TOXO, the 662 TOXO-negative subjects (50.8% with SCZ) reached a Bonferroni corrected significant association (p = 0.00017, R2 = 0.023). In contrast, the 128 TOXO-positive individuals (53.1% with SCZ) showed no significant association (p = 0.354) for SCZ-PRS and had a much lower R2 (R2 = 0.007). To account for Type-2 error in the TOXO-positive dataset, we performed a random sampling of the TOXO-negative subpopulation (n = 130, repeated 100 times) to simulate equivalent power between groups: the p-value was <0.05 for SCZ-PRS 55% of the time but was rarely (6% of the time) comparable to the high p-value of the seropositive group at p > 0.354. We found intriguing evidence that the SCZ-PRS predicts SCZ in TOXO-negative subjects, as expected, but not in the TOXO-positive individuals. This result highlights the importance of considering environmental risk factors to distinguish a subgroup with independent or different genetic components involved in the development of SCZ.


Subject(s)
Schizophrenia , Toxoplasma , Toxoplasmosis , Humans , Multifactorial Inheritance , Risk Factors , Schizophrenia/diagnosis , Schizophrenia/genetics , Toxoplasma/genetics , Toxoplasmosis/diagnosis , Toxoplasmosis/genetics
13.
Gastroenterology ; 156(8): 2254-2265.e3, 2019 06.
Article in English | MEDLINE | ID: mdl-30779925

ABSTRACT

BACKGROUND & AIMS: Crohn's disease is a relapsing and remitting inflammatory disorder with a variable clinical course. Although most patients present with an inflammatory phenotype (B1), approximately 20% of patients rapidly progress to complicated disease, which includes stricturing (B2), within 5 years. We analyzed DNA methylation patterns in blood samples of pediatric patients with Crohn's disease at diagnosis and later time points to identify changes that associate with and might contribute to disease development and progression. METHODS: We obtained blood samples from 164 pediatric patients (1-17 years old) with Crohn's disease (B1 or B2) who participated in a North American study and were followed for 5 years. Participants without intestinal inflammation or symptoms served as controls (n = 74). DNA methylation patterns were analyzed in samples collected at time of diagnosis and 1-3 years later at approximately 850,000 sites. We used genetic association and the concept of Mendelian randomization to identify changes in DNA methylation patterns that might contribute to the development of or result from Crohn's disease. RESULTS: We identified 1189 5'-cytosine-phosphate-guanosine-3' (CpG) sites that were differentially methylated between patients with Crohn's disease (at diagnosis) and controls. Methylation changes at these sites correlated with plasma levels of C-reactive protein. A comparison of methylation profiles of DNA collected at diagnosis of Crohn's disease vs during the follow-up period showed that, during treatment, alterations identified in methylation profiles at the time of diagnosis of Crohn's disease more closely resembled patterns observed in controls, irrespective of disease progression to B2. We identified methylation changes at 3 CpG sites that might contribute to the development of Crohn's disease. Most CpG methylation changes associated with Crohn's disease disappeared with treatment of inflammation and might be a result of Crohn's disease. CONCLUSIONS: Methylation patterns observed in blood samples from patients with Crohn's disease accompany acute inflammation; with treatment, these change to resemble methylation patterns observed in patients without intestinal inflammation. These findings indicate that Crohn's disease-associated patterns of DNA methylation observed in blood samples are a result of the inflammatory features of the disease and are less likely to contribute to disease development or progression.


Subject(s)
Crohn Disease/genetics , DNA Methylation/genetics , Gene Expression Regulation/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis/methods , Adolescent , Age Factors , Case-Control Studies , Child , Child, Preschool , Crohn Disease/blood , Disease Progression , Female , Follow-Up Studies , Genotype , Humans , Infant , Inflammation/genetics , Male , North America , Risk Assessment , Severity of Illness Index , Sex Factors
14.
Breast Cancer Res Treat ; 181(1): 135-144, 2020 May.
Article in English | MEDLINE | ID: mdl-32236829

ABSTRACT

PURPOSE: As a primary risk factor and modifier of breast cancer incidence and prognosis, obesity may contribute to race disparities in breast cancer outcomes. This study examined association between obesity and DNA methylation in non-Hispanic Black and White women diagnosed with breast cancer. METHODS: Genome-wide DNA methylation was measured in the breast cancer tumor tissue of 96 women using the EPIC array. To examine the association between obesity and tumor methylation, linear regression models were used-regressing methylation ß value for each cytosine and guanine (CpG) site on body mass index adjusting for covariates. Significance was set at false discovery rate (FDR) < 0.05. In the top 20 CpG sites, we explored the interactions with race and estrogen receptor (ER) status. We used multivariable Cox-proportional hazard models to examine whether methylation in the top 20 sites was associated with all-cause mortality. RESULTS: While none of the CpG sites passed the FDR threshold for significance, among the top 20 CpG sites, we observed interactions with race (TOMM20) and ER status (PSMB1, QSOX1 and PHF1). The same CpG sites in TOMM20, PSMB1, and QSOX1 were associated with all-cause mortality. CONCLUSIONS: We identified novel interactions between obesity-associated methylation and both race and ER status in genes that have been associated with tumor regulation. Our data suggest that dysregulation in two sites may associate with all-cause mortality.


Subject(s)
Black or African American/statistics & numerical data , Body Mass Index , Breast Neoplasms/mortality , DNA Methylation , Obesity/physiopathology , White People/statistics & numerical data , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/surgery , CpG Islands , Epigenesis, Genetic , Female , Follow-Up Studies , Humans , Middle Aged , Prognosis , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Survival Rate
15.
J Assist Reprod Genet ; 37(2): 427-436, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32026200

ABSTRACT

PURPOSE: Endocrine disrupting compounds (EDCs) have been shown to affect multiple biologic processes especially steroid-hormone processes. We sought to determine differences in DNA methylation exists between women with and without endometriosis following exposure to polybrominated biphenyl (PBB). METHODS: Cross-sectional study of 305 females in the Michigan PBB Registry. DNA was extracted, and DNA methylation was interrogated using the MethylationEPIC BeadChip (Illumina, San Diego, California). Demographic data was analyzed using Chi-squared and T tests. Linear regressions were performed for each cytosine-guanine dinucleotide (CpG) site, modeling the logit transformation of the ß value as a linear function of the presence of endometriosis. Sensitivity analyses were conducted controlling for estradiol levels and menopausal status. Replication study performed evaluating for any association between CpGs reported in the literature and our findings. RESULTS: In total, 39,877 CpGs nominally associated with endometriosis (p < 0.05) after adjusting for age and cellular heterogeneity, although none remained significant after correction for multiple comparisons (FDR < 0.05). Pathway analysis of these CpGs showed enrichment in 68 biologic pathways involved in various endocrine, immunologic, oncologic, and cell regulation processes as well as embryologic reproductive tract development and function (FoxO, Wnt, and Hedgehog signaling). We identified 42,261 CpG sites in the literature reported to be associated with endometriosis; 2012 of these CpG sites were also significant in our cohort. CONCLUSION: We found 39,877 CpG sites that nominally associated with endometriosis (p < 0.05) after adjusting for age and cellular heterogeneity; however, none remained significant after correction for multiple comparisons (FDR < 0.05).


Subject(s)
DNA Methylation/drug effects , Endocrine Disruptors/toxicity , Endometriosis/genetics , Epigenomics , CpG Islands/genetics , DNA Methylation/genetics , Endometriosis/chemically induced , Endometriosis/epidemiology , Endometriosis/pathology , Environmental Exposure , Female , Humans , Middle Aged , Polybrominated Biphenyls/toxicity , Reproduction/drug effects
16.
Genet Epidemiol ; 42(5): 447-458, 2018 07.
Article in English | MEDLINE | ID: mdl-29460449

ABSTRACT

There has been increasing interest in identifying genes within the human genome that influence multiple diverse phenotypes. In the presence of pleiotropy, joint testing of these phenotypes is not only biologically meaningful but also statistically more powerful than univariate analysis of each separate phenotype accounting for multiple testing. Although many cross-phenotype association tests exist, the majority of such methods assume samples composed of unrelated subjects and therefore are not applicable to family-based designs, including the valuable case-parent trio design. In this paper, we describe a robust gene-based association test of multiple phenotypes collected in a case-parent trio study. Our method is based on the kernel distance covariance (KDC) method, where we first construct a similarity matrix for multiple phenotypes and a similarity matrix for genetic variants in a gene; we then test the dependency between the two similarity matrices. The method is applicable to either common variants or rare variants in a gene, and resulting tests from the method are by design robust to confounding due to population stratification. We evaluated our method through simulation studies and observed that the method is substantially more powerful than standard univariate testing of each separate phenotype. We also applied our method to phenotypic and genotypic data collected in case-parent trios as part of the Genetics of Kidneys in Diabetes (GoKinD) study and identified a genome-wide significant gene demonstrating cross-phenotype effects that was not identified using standard univariate approaches.


Subject(s)
Genome-Wide Association Study/methods , Models, Genetic , Parents , Genetic Variation , Genome, Human , Humans , Phenotype , Statistics as Topic
17.
Genet Epidemiol ; 42(2): 156-167, 2018 03.
Article in English | MEDLINE | ID: mdl-29285792

ABSTRACT

Many large GWAS consortia are expanding to simultaneously examine the joint role of DNA methylation in addition to genotype in the same subjects. However, integrating information from both data types is challenging. In this paper, we propose a composite kernel machine regression model to test the joint epigenetic and genetic effect. Our approach works at the gene level, which allows for a common unit of analysis across different data types. The model compares the pairwise similarities in the phenotype to the pairwise similarities in the genotype and methylation values; and high correspondence is suggestive of association. A composite kernel is constructed to measure the similarities in the genotype and methylation values between pairs of samples. We demonstrate through simulations and real data applications that the proposed approach can correctly control type I error, and is more robust and powerful than using only the genotype or methylation data in detecting trait-associated genes. We applied our method to investigate the genetic and epigenetic regulation of gene expression in response to stressful life events using data that are collected from the Grady Trauma Project. Within the kernel machine testing framework, our methods allow for heterogeneity in effect sizes, nonlinear, and interactive effects, as well as rapid P-value computation.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study/methods , Genotyping Techniques/methods , Gene-Environment Interaction , Genotype , Humans , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide/genetics , Regression Analysis , Research Design , Stress, Psychological/genetics
18.
Environ Health ; 18(1): 75, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31443693

ABSTRACT

BACKGROUND: Michigan residents were directly exposed to endocrine-disrupting compounds, polybrominated biphenyl (PBB) and polychlorinated biphenyl (PCB). A growing body of evidence suggests that exposure to certain endocrine-disrupting compounds may affect thyroid function, especially in people exposed as children, but there are conflicting observations. In this study, we extend previous work by examining age of exposure's effect on the relationship between PBB exposure and thyroid function in a large group of individuals exposed to PBB. METHODS: Linear regression models were used to test the association between serum measures of thyroid function (total thyroxine (T4), total triiodothyronine (T3), free T4, free T3, thyroid stimulating hormone (TSH), and free T3: free T4 ratio) and serum PBB and PCB levels in a cross-sectional analysis of 715 participants in the Michigan PBB Registry. RESULTS: Higher PBB levels were associated with many thyroid hormones measures, including higher free T3 (p = 0.002), lower free T4 (p = 0.01), and higher free T3: free T4 ratio (p = 0.0001). Higher PCB levels were associated with higher free T4 (p = 0.0002), and higher free T3: free T4 ratio (p = 0.002). Importantly, the association between PBB and thyroid hormones was dependent on age at exposure. Among people exposed before age 16 (N = 446), higher PBB exposure was associated with higher total T3 (p = 0.01) and free T3 (p = 0.0003), lower free T4 (p = 0.04), and higher free T3: free T4 ratio (p = 0.0001). No significant associations were found among participants who were exposed after age 16. No significant associations were found between TSH and PBB or PCB in any of the analyses conducted. CONCLUSIONS: This suggests that both PBB and PCB are associated with thyroid function, particularly among those who were exposed as children or prenatally.


Subject(s)
Environmental Exposure , Polybrominated Biphenyls/blood , Polychlorinated Biphenyls/blood , Thyroid Hormones/blood , Adult , Aged , Cross-Sectional Studies , Female , Humans , Male , Michigan , Middle Aged
19.
Compr Psychiatry ; 93: 33-40, 2019 08.
Article in English | MEDLINE | ID: mdl-31306866

ABSTRACT

OBJECTIVE: C-reactive protein (CRP), a marker of systemic inflammation, has been associated with psychiatric disorders including major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). Some research suggests that exposure to trauma can trigger increased activity in the inflammatory system. Dissociation is associated with chronic trauma exposure and may be an important factor in understanding the risk for psychiatric outcomes associated with inflammation. The main objective of the current study was to understand how CRP was related to trauma, dissociation, PTSD and MDD in a sample of 55 traumatized African American women with type 2 diabetes mellitus recruited from an urban hospital. METHOD: High sensitivity CRP (hsCRP) was assayed through blood samples; psychiatric disorders were assessed with structured clinical interviews, dissociation was assessed with the Multiscale Dissociation Inventory, and exposure to trauma in childhood and adulthood was assessed with the Childhood Trauma Questionnaire and the Traumatic Events Inventory, respectively. RESULTS: Correlational results showed a significant association between higher concentrations of hsCRP and child abuse (p < 0.05), overall dissociation severity (p < 0.001), and PTSD symptoms (p < 0.01). ANOVA results showed significantly higher levels of hsCRP in those with current MDD, current PTSD, and remitted PTSD. A hierarchical linear regression model demonstrated a significant association between dissociation symptoms and greater hsCRP levels independent of childhood abuse, PTSD, and MDD (R2∆ = 0.11, p = 0.001) and independent of emotion dysregulation (p < 0.05). CONCLUSION: These findings suggest that dissociation symptoms among those with a history of trauma may be particularly associated with higher levels of inflammation.


Subject(s)
Adult Survivors of Child Abuse , C-Reactive Protein/metabolism , Child Abuse/trends , Depressive Disorder, Major/blood , Dissociative Disorders/blood , Stress Disorders, Post-Traumatic/blood , Adult , Adult Survivors of Child Abuse/psychology , Black or African American/psychology , Biomarkers/blood , Child , Child Abuse/psychology , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/psychology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/psychology , Dissociative Disorders/epidemiology , Dissociative Disorders/psychology , Female , Humans , Middle Aged , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/psychology , Surveys and Questionnaires
20.
BMC Genomics ; 19(1): 476, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29914364

ABSTRACT

BACKGROUND: Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. RESULTS: We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60-70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. CONCLUSIONS: This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies.


Subject(s)
Blood Cells/metabolism , DNA Methylation , Epigenesis, Genetic , Adolescent , Adult , Aged , Cohort Studies , CpG Islands , Female , Gene Expression Profiling , Gene Ontology , Genomics , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL