ABSTRACT
[Cu(HF2)(pyz)2]BF4 consists of rare mu(1,3) bridging HF2- anions and micro-pyrazine ligands leading to a 3D pseudo-cubic framework that antiferromagnetically orders below 1.54(1) K.
Subject(s)
Copper/chemistry , Hydrofluoric Acid/chemistry , Organometallic Compounds/chemistry , Polymers/chemistry , Pyrazines/chemistry , Crystallography, X-Ray , Ligands , Magnetics , Models, Molecular , Stereoisomerism , TemperatureABSTRACT
We have successfully developed electrochemical sensors based on functionalized nanostructured materials for voltammetric analysis of toxic metal ions. Glycinylurea self-assembled monolayers on mesoporous silica (Gly-UR SAMMS) were incorporated in carbon paste electrodes for the detection of toxic metal ions such as lead, copper, and mercury based on adsorptive stripping voltammetry (AdSV). The electrochemical sensor yields a linear response at a low ppb level of Pb2+ (i.e., 2.5-50 ppb) after a 2-min preconcentration period, with reproducible measurements (%RSD = 3.5, N = 6) and an excellent detection limit (1 ppb). By exploiting the interfacial functionality of Gly-UR SAMMS, the sensor is selective for the target species, does not require the use of a mercury film, and can be easily regenerated in dilute acid solution. The rigid, open, parallel pore structure, combined with suitable interfacial chemistry of SAMMS, also results in fast analysis times (2-3 min). The nanostructured SAMMS materials enable the development of miniature sensing devices that are compact and low cost, have low energy consumption, and are easily integrated into field-deployable units.