Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
J Comput Chem ; 45(15): 1279-1288, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38353541

ABSTRACT

Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the liquid ammonia is an ensemble of different structures of ammonia clusters. After studious research of the representative configurations of ammonia clusters through the cluster research program ABCluster, the configurations have been optimized at the MN15/6-31++G(d,p) level of theory. These optimizations lead to geometries and frequencies as inputs for the Peacemaker code. The QCE study of this molecular system permits us to get the liquid phase populations in a temperature range of 190-260 K, covering the temperatures from the melting point to the boiling point. The results show that the population of liquid ammonia comprises mainly the ammonia hexadecamer followed by pentadecamer, tetradecamer, and tridecamer. We noted that the small-sized ammonia clusters do not contribute to the population of liquid ammonia. In addition, the thermodynamic properties, such as heat of vaporization, heat capacity, entropy, enthalpy, and free energies, obtained by the QCE theory have been compared to the experiment given some relatively good agreements in the gas phase and show considerable discrepancies in liquid phase except the density. Finally, based on the predicted population, we calculated the infrared spectrum of liquid ammonia at 215 K temperature. It comes out that the calculated infrared spectrum qualitatively agrees with the experiment.

2.
Inorg Chem ; 63(37): 17188-17197, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39215706

ABSTRACT

The identification of ligands that stabilize Au(III) centers has led to the isolation of complexes for applications in catalysis, gold-based therapeutics, and functional materials. Herein, we report the coordination of gold by tripyrrin-1,14-dione, a linear tripyrrole with the scaffold of naturally occurring metabolites of porphyrin-based protein cofactors (e.g., heme). Tripyrrindione H3TD2 binds Au(III) as a trianionic tridentate ligand to form square planar complex [Au(TD2)(H2O)], which features an adventitious aqua ligand. Two reversible ligand-based oxidations of this complex allow access to the other known redox states of the tripyrrindione framework. Conversely, (spectro)electrochemical measurements and DFT analysis indicate that the reduction of the complex is likely metal-based. The chemical reduction of [Au(TD2)(H2O)] leads to a reactive species that utilizes dichloromethane in the formation of a cyclometalated organo-Au(III) complex. Both the aqua and the organometallic Au(III) complexes were characterized in the solid state by microcrystal electron diffraction (MicroED) methods, which were critical for the analysis of the microcrystalline sample of the organo-gold species. Overall, this study illustrates the synthesis of Au(III) tripyrrindione as well as its redox profile and reactivity leading to gold alkylation chemistry.

3.
Inorg Chem ; 63(19): 8739-8749, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38696617

ABSTRACT

Ground-state and time-dependent density functional theory (TDDFT) calculations with the long-range-corrected, Coulomb-attenuating CAMY-B3LYP exchange-correlation functional and large, all-electron STO-TZ2P basis sets have been used to examine the potential "inverse hypercorrole" character of meso-p-nitrophenyl-appended dicyanidocobalt(III) corrole dianions. The effect is most dramatic for 5,15-bis(p-nitrophenyl) derivatives, where it manifests itself in intense NIR absorptions. The 10-aryl groups in these complexes play a modulatory role, as evinced by experimental UV-visible spectroscopic and electrochemical data for a series of 5,15-bis(p-nitrophenyl) dicyanidocobalt(III) corroles. TDDFT (CAMY-B3LYP) calculations ascribe these features clearly to a transition from the corrole's a2u-like HOMO (retaining the D4h irrep used for metalloporphyrins) to a nitrophenyl-based LUMO. The outward nature of this transition contrasts with the usual phenyl-to-macrocycle direction of charge transfer transitions in many hyperporphyrins and hypercorroles; thus, the complexes studied are aptly described as inverse hypercorroles.

4.
Inorg Chem ; 63(21): 9842-9853, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38743029

ABSTRACT

Phlorins have long remained underexplored relative to their fully conjugated counterparts, such as porphyrins, hydroporphyrins, and corroles. Herein, we have attempted to bridge that knowledge gap with a scalar-relativistic density functional theory (DFT) study of unsubstituted iridium and gold phlorin derivatives and a multitechnique experimental study of iridium-bispyridine and gold complexes of 5,5-dimethyl-10,15,20-tris(pentafluorophenyl)phlorin. Theory and experiments concur that the phlorin derivatives exhibit substantially smaller HOMO-LUMO gaps, as reflected in a variety of observable properties. Thus, the experimentally studied Ir and Au complexes absorb strongly in the near-infrared (NIR), with absorption maxima at 806 and 770 nm, respectively. The two complexes are also weakly phosphorescent with emission maxima at 950 and 967 nm, respectively. They were also found to photosensitize singlet oxygen formation, with quantum yields of 40 and 28%, respectively. The near-infrared (NIR) absorption and emission are consonants with smaller electrochemical HOMO-LUMO gaps of ∼1.6 V, compared to values of ∼2.1 V, for electronically innocent porphyrins and corroles. Interestingly, both the first oxidation and reduction potentials of the Ir complex are some 600 mV shifted to more negative potentials relative to those of the Au complex, indicating an exceptionally electron-rich macrocycle in the case of the Ir complex.

5.
Environ Res ; 243: 117870, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38072111

ABSTRACT

The class of insecticides known as neonicotinoid insecticides has gained extensive application worldwide. Two characteristics of neonicotinoid pesticides are excellent insecticidal activity and a wide insecticidal spectrum for problematic insects. Neonicotinoid pesticides can also successfully manage pest insects that have developed resistance to other insecticide classes. Due to its powerful insecticidal properties and rapid plant absorption and translocation, dinotefuran, the most recent generation of neonicotinoid insecticides, has been widely used against biting and sucking insects. Dinotefuran has a wide range of potential applications and is often used globally. However, there is growing evidence that they negatively impact the biodiversity of organisms in agricultural settings as well as non-target organisms. The objective of this review is to present an updated summary of current understanding regarding the non-target effects of dinotefuran; we also enumerated nano- and bio-based mitigation and management strategies to reduce the impact of dinotefuran on non-target organisms and to pinpoint knowledge gaps. Finally, future study directions are suggested based on the limitations of the existing studies, with the goal of providing a scientific basis for risk assessment and the prudent use of these insecticides.


Subject(s)
Guanidines , Insecticides , Animals , Insecticides/toxicity , Ecosystem , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Insecta
6.
J Org Chem ; 88(18): 13022-13029, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37647416

ABSTRACT

Free-base corroles have long been known to be acidic, readily undergoing deprotonation by mild bases and in polar solvents. The conjugate base, however, has not been structurally characterized until now. Presented here is a first crystal structure of a free-base corrole anion, derived from tris(p-cyanophenyl)corrole, as the tetrabuylammonium salt. The low-temperature (100 K) structure reveals localized hydrogens on a pair of opposite pyrrole nitrogens. DFT calculations identify such a structure as the global minimum but also point to two cis tautomers only 4-7 kcal/mol above the ground state. In terms of free energy, however, the cis tautomers are above or essentially flush with the trans-to-cis barrier so the cis tautomers are unlikely to exist or be observed as true intermediates. Thus, the hydrogen bond within each dipyrrin unit on either side of the molecular pseudo-C2 axis through C10 (i.e., between pyrrole rings A and B or between C and D) qualifies as or closely approaches a low-barrier hydrogen bond. Proton migration across the pseudo-C2 axis entails much higher activation energies >20 kcal/mol, reflecting the relative rigidity of the molecule along the C1-C19 pyrrole-pyrrole linkage.

7.
Inorg Chem ; 62(22): 8467-8471, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37219484

ABSTRACT

The interaction of three free-base meso-tris(p-X-phenyl)corroles H3[TpXPC] (X = H, CH3, OCH3) with Re2(CO)10 at 235 °C in the presence of K2CO3 in o-dichlorobenzene has led to putative rhenium biscorrole sandwich compounds with the formula ReH[TpXPC]2. Density functional theory calculations and Re L3-edge extended X-ray absorption fine structure measurements suggest a seven-coordinate metal center, with the "extra" hydrogen located on one of the corrole nitrogens. The complexes can be deprotonated by a base such as 1,8-diazabicyclo[5.4.0]undec-7-ene, resulting in a substantial sharpening of the UV-vis spectra and split Soret bands, consistent with the generation of C2-symmetric anions. Both the seven-coordinate neutral and eight-coordinate anionic forms of the complexes represent a new coordination motif in the field of rhenium-porphyrinoid interactions.

8.
J Phys Chem A ; 127(5): 1103-1111, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36716408

ABSTRACT

In this work, we have studied the solvation of manganese(III) ion in water and in ammonia using three levels of theory: MP2, MN15, and ωB97XD associated with the aug-cc-pVDZ basis set. The studied systems are constituted of Mn3+(H2O)6 and Mn3+(NH3)6 in gas and solvent phases as well as Mn3+(H2O)18 and Mn3+(NH3)18 in the gas phase. Four aspects of the solvation of manganese(III) ion have been examined for the aforementioned systems at the three levels of theory. First, we started by locating the Jahn-Teller elongated and compressed configuration in Mn3+(H2O)6 and Mn3+(NH3)6. Second, we calculated the spin state energies and the spin state free energies for temperatures ranging from 50 to 400 K to look at possible spin crossover in the studied systems. Third, we carried out a quantum theory of atoms in molecules (QTAIM) analysis, and we determined the ionic radii of manganese(III) ion in water and in ammonia. Fourth, we calculated the solvation free energies and the solvation enthalpies of manganese(III) ion in water and in ammonia using the cluster continuum solvation model. For these four aspects of the solvation of manganese(III) ion, most of the reported properties are provided in this work for the first time. We particularly found that the calculated solvation enthalpy of the manganese(III) ion in water is in good agreement with an experimental estimate.

9.
Int J Phytoremediation ; 24(3): 301-310, 2022.
Article in English | MEDLINE | ID: mdl-34154475

ABSTRACT

NOVELTY STATEMENT: nsufficient innovative research on the sequestration of Cr(VI) from the aquatic ecosystem has made Cr(VI) a recalcitrant water contaminant that often affects water sources. In this work, a novel plant anchor-nanocomposite was fabricated from the spent molecular sieve, multi-walled carbon nanotubes, and the extract from the stem bark of Pentaclethra macrophylla. It was envisaged that due to the phytochemical constituent of the modifier, this nanocomposite could also act as potent adsorbents for the treatment of Cr(VI) polluted water. To the best of our knowledge, the application of Pentaclethra macrophylla stem bark extract as a modifier for the green fabrication of nanocomposite has not been reported. The resulting composites showed good uptake capacity for Cr(VI) as well as efficient reusability.


Subject(s)
Fabaceae/chemistry , Nanocomposites , Nanotubes, Carbon , Plant Extracts/chemistry , Water Pollutants, Chemical , Water Purification , Adsorption , Biodegradation, Environmental , Chromium , Ecosystem , Hydrogen-Ion Concentration , Kinetics , Plant Bark/chemistry , Water Pollutants, Chemical/analysis
10.
J Environ Manage ; 304: 114166, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34864408

ABSTRACT

The high efficiency of metal-organic-frameworks (MOFs) such as the ZIF, MIL and UiO type species in dye adsorption is well established. Recently, an emerging class of photoresponsive azobenzene-based MOFs has found suitable application in gas adsorption. However, there is a dearth of research on their use in the adsorption of dyes and other water pollutants. In this research, two microporous photoresponsive azobenzene dicarboxylate MOFs of Al3+ (Al-AZB) and Zr4+ (Zr-AZB) were synthesized for the adsorption of congo red (CR) dye. The surface and textural properties of the synthesized MOFs were characterized by FTIR, PXRD, SEM, TGA, BET and pore analysis. Both MOFs were crystalline, thermally stable up to 300 °C and stable in aqueous medium at room temperature. The Al-AZB displayed a higher surface area (2718 m2/g) than the Zr-AZB (1098 m2/g), which significantly impacted the higher adsorption of CR. Besides, pore volumes of 0.86 cm3/g and 0.35 cm3/g were obtained for Al-AZB and Zr-AZB, respectively. The maximum adsorption capacity of Al-AZB and Zr-AZB was 456.6 mg/g and 128.9 mg/g, respectively, with the former superior to other potent adsorbents. The pseudo-second-order and Langmuir models were well correlated with the dye uptake on the MOFs. Thermodynamics revealed random and endothermic sorption of CR dominated by chemisorption, while efficient regeneration and reuse of both MOFs were achieved using dimethylformamide as eluent. The results proved the potency of the synthesized photoresponsive MOFs, as highly efficient and reusable materials for dye adsorption.


Subject(s)
Metal-Organic Frameworks , Adsorption , Aluminum , Azo Compounds , Coloring Agents , Zirconium
11.
Molecules ; 27(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35335295

ABSTRACT

The oxidative addition of methyl iodide to [Rh(ß-diketonato)(CO)(PPh)3] complexes, as modal catalysts of the first step during the Monsanto process, are well-studied. The ß-diketonato ligand is a bidentate (BID) ligand that bonds, through two O donor atoms (O,O-BID ligand), to rhodium. Imino-ß-diketones are similar to ß-diketones, though the donor atoms are N and O, referred to as an N,O-BID ligand. In this study, the oxidative addition of methyl iodide to [Rh(imino-ß-diketonato)(CO)(PPh)3] complexes, as observed on UV-Vis spectrophotometry, IR spectrophotometry and NMR spectrometry, are presented. Experimentally, one isomer of [Rh(CH3COCHCNPhCH3)(CO)(PPh3)] and two isomers of [Rh(CH3COCHCNHCH3)(CO)(PPh3)] are observed-in agreement with density functional theory (DFT) calculations. Experimentally the [Rh(CH3COCHCNPhCH3)(CO)(PPh3)] + CH3I reaction proceeds through one reaction step, with a rhodium(III)-alkyl as the final reaction product. However, the [Rh(CH3COCHCNHCH3)(CO)(PPh3)] + CH3I reaction proceeds through two reaction steps, with a rhodium(III)-acyl as the final reaction product. DFT calculations of all the possible reaction products and transition states agree with experimental findings. Due to the smaller electronegativity of N, compared to O, the oxidative addition reaction rate of CH3I to the two [Rh(imino-ß-diketonato)(CO)(PPh)3] complexes of this study was 7-11 times faster than the oxidative addition reaction rate of CH3I to [Rh(CH3COCHCOCH3)(CO)(PPh3)].

12.
Molecules ; 27(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36144769

ABSTRACT

Theoretical investigations by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods shed light on how the type of ligand or attached groups influence the electronic structure, absorption spectrum, electron excitation, and intramolecular and interfacial electron transfer of the Cu(II) complexes under study. The findings provide new insight into the designing and screening of high-performance dyes for dye-sensitized solar cells (DSSCs).


Subject(s)
Solar Energy , Coloring Agents/chemistry , Copper , Ligands , Models, Molecular , Spectrophotometry, Ultraviolet
13.
Molecules ; 27(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35209160

ABSTRACT

Metal organic frameworks (MOFs) are porous hybrid crystalline materials that consist of organic linkers coordinated to metal centres. The trans-cis isomerisation kinetics of the azobenzene-4,4'-dicarboxylic acid (AZB(COOH)2) precursor, as well as the Al3+ (Al-AZB)- and Zr4+ (Zr-AZB)-based MOFs with azobenzene-4,4'-dicarboxylate linkers, are presented. The photo-isomerization in the MOFs originates from singly bound azobenzene moieties on the surface of the MOF. The type of solvent used had a slight effect on the rate of isomerization and half-life, while the band gap energies were not significantly affected by the solvents. Photo-responsive MOFs can be classified as smart materials with possible applications in sensing, drug delivery, magnetism, and molecular recognition. In this study, the MOFs were applied in the dye adsorption of congo red (CR) in contaminated water. For both MOFs, the UV-irradiated cis isomer exhibited a slightly higher CR uptake than the ambient-light exposed trans isomer. Al-AZB displayed a dye adsorption capacity of over 95% for both the UV-irradiated and ambient light samples. The ambient light exposed Zr-AZB, and the UV irradiated Zr-AZB had 39.1% and 44.6% dye removal, respectively.

14.
Inorg Chem ; 60(11): 8315-8321, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33998801

ABSTRACT

The interaction of free-base triarylcorroles with Re2(CO)10 in 1,2-dichlorobenzene in the presence of 2,6-lutidine at 180 °C under strict anerobic conditions afforded approximately 10% yields of rhenium corrole dimers. The compounds exhibited diamagnetic 1H NMR spectra consistent with a metal-metal quadruple bond with a σ2π4δ2 orbital occupancy. One of the compounds proved amenable to single-crystal X-ray structure determination, yielding a metal-metal distance of ∼2.24 Å, essentially identical to that in triple-bonded osmium corrole dimers. On the other hand, the electrochemical properties of Re and Os corrole dimers proved to be radically different. Thus, the reduction potentials of the Re corrole dimers are some 800 mV upshifted relative to those of their Os counterparts. Stated differently, the Re corrole dimers are dramatically easier to reduce, reflecting electron addition to δ* versus π* molecular orbitals for Re and Os corrole dimers, respectively. The data also imply electrochemical HOMO-LUMO gaps of only 1.0-1.1 V for rhenium corrole dimers, compared with values of 1.85-1.90 V for their Os counterparts. These HOMO-LUMO gaps rank among the first such values reported for quadruple-bonded transition-metal dimers for any type of supporting ligand, porphyrin-type or not.

15.
Inorg Chem ; 60(16): 12457-12466, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34347474

ABSTRACT

Oligopyrroles form a versatile class of redox-active ligands and electron reservoirs. Although the stabilization of radicals within oligopyrrolic π systems is more common for macrocyclic ligands, bidentate dipyrrindiones are emerging as compact platforms for one-electron redox chemistry in transition-metal complexes. We report the synthesis of a bis(aqua) palladium(II) dipyrrindione complex and its deprotonation-driven dimerization to form a hydroxo-bridged binuclear complex in the presence of water or triethylamine. Electrochemical, spectroelectrochemical, and computational analyses of the binuclear complex indicate the accessibility of two quasi-reversible ligand-centered reduction processes. The product of a two-electron chemical reduction by cobaltocene was isolated and characterized. In the solid state, this cobaltocenium salt features a folded dianionic complex that maintains the hydroxo bridges between the divalent palladium centers. X-band and Q-band EPR spectroscopic experiments and DFT computational analysis allow assignment of the dianionic species as a diradical with spin density almost entirely located on the two dipyrrindione ligands. As established from the EPR temperature dependence, the associated exchange coupling is weak and antiferromagnetic (J ≈ -2.5 K), which results in a predominantly triplet state at the temperatures at which the measurements have been performed.

16.
Inorg Chem ; 60(15): 11090-11097, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34255507

ABSTRACT

The difference in [3 + 2] cycloaddition reactivity between fac-[MO3(tacn)]+ (M = Re, 99Tc; tacn = 1,4,7-triazacyclononane) complexes has been reexamined with a selection of unsaturated substrates including sodium 4-vinylbenzenesulfonate, norbornene, 2-butyne, and 2-methyl-3-butyn-2-ol (2MByOH). None of the substrates was found to react with the Re cation in water at room temperature, whereas the 99Tc reagent cleanly yielded the [3 + 2] cycloadducts. Interestingly, a bis-adduct was obtained as the sole product for 2MByOH, reflecting the high reactivity of a 99TcO-enediolato monoadduct. On the basis of scalar relativistic and nonrelativistic density functional theory calculations of the reaction pathways, the dramatic difference in reactivity between the two metals has now been substantially attributed to differences in relativistic effects, which are much larger for the 5d metal. Furthermore, scalar-relativistic ΔG values were found to decrease along the series propene > norbornene > 2-butyne > dimethylketene, indicating major variations in the thermodynamic driving force as a function of the unsaturated substrate. The suggestion is made that scalar-relativistic effects, consisting of greater destabilization of the valence electrons of the 5d elements compared with those of the 4d elements, be viewed as a new design principle for novel 99mTc/Re radiopharmaceuticals, as well as more generally in heavy-element coordination chemistry.

17.
J Phys Chem A ; 125(46): 9962-9968, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34762440

ABSTRACT

Nearly a half-century after Gouterman classified the UV-vis-NIR spectra of porphyrin derivatives as normal, hyper, or hypso, we propose a heretofore unsuspected "mechanism" underlying hypso spectra. Hypsoporphyrins, which exhibit blueshifted optical spectra relative to normal porphyrins (such as Zn porphyrins), typically involve dn transition metal ions, where n > 6. The spectral blueshifts have been traditionally ascribed to elevated porphyrin eg LUMO (lowest unoccupied molecular orbital) energy levels as a result of antibonding interactions with metal dπ orbitals. Herein, we have found instead that the blueshifts reflect a lowering of the a2u HOMO (highest occupied molecular orbital) energy levels. Electronegative metals such as Pd and Pt transfer smaller quantities of electron density to the porphyrin nitrogens, compared to a more electropositive metal such as Zn. With large amplitudes at the porphyrin nitrogens, the a2u HOMOs of Pd(II) and Pt(II) porphyrins accordingly exhibit lower orbital energies than those of Zn(II) porphyrins, thus explaining the hypso effect. Hypso spectra are also observed for corroles: compared with six-coordinate Al(III) corroles, which may be thought of exhibiting normal spectra, Au(III) corroles, for instance, exhibit blueshifted or hypso spectra.

18.
J Phys Chem A ; 125(46): 9953-9961, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34714662

ABSTRACT

A detailed TDDFT study (with all-electron STO-TZ2P basis sets and the COSMO solvation model) has been carried out on the effect of diprotonation on the UV-vis-NIR spectra of free-base tetraphenylporphyrin and tetrakis(p-aminophenyl)porphyrin. The diprotonated forms have been modeled as their bis-formate complexes, i.e., as so-called porphyrin diacids. The dramatic redshift of the Q-band of the TAPP diacid has been explained in terms of an elevated "a2u" HOMO and lowered LUMOs, both reflecting infusion of aminophenyl character into the otherwise classic Gouterman-type frontier MOs. The exercise has also yielded valuable information on the performance of different exchange-correlation functionals. Thus, the hybrid B3LYP functional was found to yield a substantially better description of key spectral features, especially the diprotonation-induced redshifts, than the pure OLYP functional. Use of the range-separated CAMY-B3LYP functional, on the other hand, did not result in improvements relative to B3LYP.

19.
Int J Phytoremediation ; 23(4): 347-361, 2021.
Article in English | MEDLINE | ID: mdl-32898434

ABSTRACT

This research evaluated the adsorption of celestine blue (CB) onto a novel Solanum tuberosum waste-magnetite nanocomposite (Mt@STB), prepared by an ecofriendly impregnation of magnetite (Mt) nanoparticles onto Solanum tuberosum waste (STB). The adsorbents characterization revealed that Mt@STB had a surface area (18.92 m2/g), pHpzc (7.55), porous morphology as well as suitable functional groups for efficient sequestration of CB onto the composite. The SEM, XRD, and EDX showed successful incorporation of 31.21 nm average size Mt nanoparticles on Mt@STB. Faster kinetics of CB sequestration from the wastewater was obtained for Mt@STB (100 min) compared to STB (140 min). Among four isotherm models, the Langmuir exhibited the best fit with R2 > 0.9971 and sum square errors (SSE) < 0.0151. The pristine STB and Mt@STB composite showed maximum monolayer CEB uptake of 7.61 and 9.02 mg/g, as well as optimum removal of 73.8 and 84.7%, respectively. The pseudo-second-order model was more suitable in the kinetic description, while thermodynamics revealed a physical, spontaneous, and endothermic CB uptake. Besides, the efficacy of the composite for CB was confirmed from efficient regeneration over three adsorption/desorption cycles, which specified the viability of Mt@STB as a sustainable material for the decontamination of CB polluted water. NOVELTY STATEMENT The adsorption of dyes from wastewaters has been widely studied due to the harmful effects on the ecosystem. However, research on the removal of celestine blue (CB) dye is rare despite its wide use in the nuclear and textile industries. Until date, there is no report on the adsorption of CB on biomaterial via biosorption. Therefore, the biosorption behavior of CB is presently unknown. Hence, this study reports the biosorption of CB onto a biosorbent (Solanum tuberosum peel [STB]) in an attempt to understand its biosorption behavior. Besides, the impregnation of magnetite (Mt) nanoparticles has been reported to enhance the uptake of most adsorbents for dye. To the best of our knowledge, such magnetic nanoparticle impregnation of STB has not been reported. We, therefore, synthesized a novel biowaste-magnetite composite (Mt@STB) and evaluated its potentials for the uptake as well as its reuse for CB biosorption.


Subject(s)
Magnetite Nanoparticles , Solanum tuberosum , Water Pollutants, Chemical , Water Purification , Adsorption , Biodegradation, Environmental , Coloring Agents , Ecosystem , Hydrogen-Ion Concentration , Kinetics , Oxazines , Thermodynamics , Water Pollutants, Chemical/analysis
20.
Int J Phytoremediation ; 23(14): 1486-1496, 2021.
Article in English | MEDLINE | ID: mdl-33969765

ABSTRACT

A low-cost adsorbent (Detarium senegalense stem bark extract coated shale (DSMS)) comprising pristine shale (PSH) coated with D. senegalense stem bark extract was prepared and utilized for the adsorption of Cr(VI). The DSMS and PSH were characterized by the SEM, XRD, FTIR, EDX, TGA, and BET. The batch adsorption experiment results showed that DSMS exhibited an excellent ability to adsorb chromium with a maximum removal occurring at pH 2, dosage of 0.05 g and 180 min contact time. The adsorption process was best described by the pseudo-second-order for DSMS and Elovich model for PSH which depicts chemisorption as the major mechanism responsible for the uptake of Cr(VI) onto the adsorbents. Langmuir model provided the best fit to the isotherm analysis on both materials. The maximum adsorption capacity of DSMS and PSH were 64.98 mg g-1 and 29.97 mg g-1 respectively. The thermodynamics revealed that the adsorption of Cr(VI) was feasible, endothermic and entropy driven. Furthermore, after five cycles of reuse, both DSMS and PSH demonstrated effective regeneration and reusability for Cr(VI) uptake. The structural properties, reusability, and high adsorption capabilities of DSMS indicate that they could be used as low-cost adsorbents in large-scale Cr(VI) wastewater treatment. Novelty statement Plant extracts are packed with a variety of polyphenolic compounds, such as aldehydes, alcohols, carboxylics, ethers, ketones, and phenols which contains several functionalities useful in the adsorption of toxic metals. Despite this, research on the use of plant extracts in the modification of adsorbent materials for enhanced adsorption is rare. This study reports for the first time the use of Detarium senegalense stem bark extract coated shale adsorbent for the efficient uptake of Cr(VI) ion.


Subject(s)
Chromium/metabolism , Fabaceae/chemistry , Plant Extracts/chemistry , Water Pollutants, Chemical , Water Purification , Adsorption , Biodegradation, Environmental , Hydrogen-Ion Concentration , Kinetics , Plant Bark/chemistry , Thermodynamics , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL