Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Biopharm Stat ; 30(4): 623-638, 2020 07 03.
Article in English | MEDLINE | ID: mdl-31782938

ABSTRACT

Developing targeted therapies based on patients' baseline characteristics and genomic profiles such as biomarkers has gained growing interests in recent years. Depending on patients' clinical characteristics, the expression of specific biomarkers or their combinations, different patient subgroups could respond differently to the same treatment. An ideal design, especially at the proof of concept stage, should search for such subgroups and make dynamic adaptation as the trial goes on. When no prior knowledge is available on whether the treatment works on the all-comer population or only works on the subgroup defined by one biomarker or several biomarkers, it is necessary to incorporate the adaptive estimation of the heterogeneous treatment effect to the decision-making at interim analyses. To address this problem, we propose an Adaptive Subgroup-Identification Enrichment Design, ASIED, to simultaneously search for predictive biomarkers, identify the subgroups with differential treatment effects, and modify study entry criteria at interim analyses when justified. More importantly, we construct robust quantitative decision-making rules for population enrichment when the interim outcomes are heterogeneous in the context of a multilevel target product profile, which defines the minimal and targeted levels of treatment effect. Through extensive simulations, the ASIED is demonstrated to achieve desirable operating characteristics and compare favorably against alternatives.


Subject(s)
Controlled Clinical Trials as Topic/statistics & numerical data , Research Design/statistics & numerical data , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Bayes Theorem , Biomarkers/metabolism , Computer Simulation , Data Interpretation, Statistical , Decision Support Techniques , Humans , Molecular Targeted Therapy/statistics & numerical data , Nootropic Agents/therapeutic use , Precision Medicine/statistics & numerical data , Proof of Concept Study , Treatment Outcome
2.
Arch Phys Med Rehabil ; 98(9): 1792-1799, 2017 09.
Article in English | MEDLINE | ID: mdl-28130082

ABSTRACT

OBJECTIVE: To identify the inflammatory mediators around the time of pneumonia onset associated with concurrent or later onset of pressure ulcers (PUs). DESIGN: Retrospective. SETTING: Acute hospitalization and inpatient rehabilitation unit of a university medical center. PARTICIPANTS: Individuals (N=86) with traumatic spinal cord injury (SCI) were included in the initial analyses. Fifteen of the 86 developed pneumonia and had inflammatory mediator data available. Of these 15, 7 developed PUs and 8 did not. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Twenty-three inflammatory mediators in plasma and urine were assayed. The differences in concentrations of plasma and urine inflammatory mediators between the closest time point before and after the diagnosis of pneumonia were calculated. RESULTS: Initial chi-square analysis revealed a significant (P=.02) association between pneumonia and PUs. Individuals with SCI and diagnosed pneumonia had nearly double the risk for developing PUs compared with those with no pneumonia. In individuals with pneumonia, Mann-Whitney U exact tests suggested an association (P<.05) between the formation of a first PU and a slight increase in plasma concentrations of tumor necrosis factor-alpha (TNF-α), and a decrease in urine concentrations of TNF-α, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin (IL)-15 after onset of pneumonia. CONCLUSIONS: These findings suggest that a relatively small increase in plasma TNF-α, and decreases in urine TNF-α, GM-CSF, and IL-15 from just before to just after the diagnosis of pneumonia could be markers for an increased risk of PUs in individuals with pneumonia after traumatic SCI.


Subject(s)
Inflammation Mediators/blood , Inflammation Mediators/urine , Pneumonia/complications , Pressure Ulcer/etiology , Spinal Cord Injuries/complications , Chi-Square Distribution , Cross-Sectional Studies , Female , Granulocyte-Macrophage Colony-Stimulating Factor/urine , Humans , Interleukin-15/urine , Male , Pilot Projects , Pneumonia/blood , Pneumonia/urine , Retrospective Studies , Risk Factors , Spinal Cord Injuries/blood , Spinal Cord Injuries/urine , Statistics, Nonparametric , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/urine
3.
Open Forum Infect Dis ; 11(3): ofae081, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38440301

ABSTRACT

Background: Index-cluster studies may help characterize the spread of communicable infections in the presymptomatic state. We describe a prospective index-cluster sampling strategy (ICSS) to detect presymptomatic respiratory viral illness and its implementation in a college population. Methods: We enrolled an annual cohort of first-year undergraduates who completed daily electronic symptom diaries to identify index cases (ICs) with respiratory illness. Investigators then selected 5-10 potentially exposed, asymptomatic close contacts (CCs) who were geographically co-located to follow for infections. Symptoms and nasopharyngeal samples were collected for 5 days. Logistic regression model-based predictions for proportions of self-reported illness were compared graphically for the whole cohort sampling group and the CC group. Results: We enrolled 1379 participants between 2009 and 2015, including 288 ICs and 882 CCs. The median number of CCs per IC was 6 (interquartile range, 3-8). Among the 882 CCs, 111 (13%) developed acute respiratory illnesses. Viral etiology testing in 246 ICs (85%) and 719 CCs (82%) identified a pathogen in 57% of ICs and 15% of CCs. Among those with detectable virus, rhinovirus was the most common (IC: 18%; CC: 6%) followed by coxsackievirus/echovirus (IC: 11%; CC: 4%). Among 106 CCs with a detected virus, only 18% had the same virus as their associated IC. Graphically, CCs did not have a higher frequency of self-reported illness relative to the whole cohort sampling group. Conclusions: Establishing clusters by geographic proximity did not enrich for cases of viral transmission, suggesting that ICSS may be a less effective strategy to detect spread of respiratory infection.

4.
Genome Med ; 13(1): 83, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001247

ABSTRACT

BACKGROUND: While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. RESULTS: Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs associated with both severe COVID-19 and other human traits demonstrated colocalization of the GWAS signal at the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN). This finding points to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. CONCLUSIONS: Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches. The iCPAGdb web portal is accessible at http://cpag.oit.duke.edu and the software code at https://github.com/tbalmat/iCPAGdb .


Subject(s)
COVID-19/genetics , Databases, Nucleic Acid , Genetic Predisposition to Disease , Linkage Disequilibrium , Multifactorial Inheritance , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Genome-Wide Association Study , Humans
5.
Lancet Infect Dis ; 21(3): 396-404, 2021 03.
Article in English | MEDLINE | ID: mdl-32979932

ABSTRACT

BACKGROUND: Early and accurate identification of individuals with viral infections is crucial for clinical management and public health interventions. We aimed to assess the ability of transcriptomic biomarkers to identify naturally acquired respiratory viral infection before typical symptoms are present. METHODS: In this index-cluster study, we prospectively recruited a cohort of undergraduate students (aged 18-25 years) at Duke University (Durham, NC, USA) over a period of 5 academic years. To identify index cases, we monitored students for the entire academic year, for the presence and severity of eight symptoms of respiratory tract infection using a daily web-based survey, with symptoms rated on a scale of 0-4. Index cases were defined as individuals who reported a 6-point increase in cumulative daily symptom score. Suspected index cases were visited by study staff to confirm the presence of reported symptoms of illness and to collect biospecimen samples. We then identified clusters of close contacts of index cases (ie, individuals who lived in close proximity to index cases, close friends, and partners) who were presumed to be at increased risk of developing symptomatic respiratory tract infection while under observation. We monitored each close contact for 5 days for symptoms and viral shedding and measured transcriptomic responses at each timepoint each day using a blood-based 36-gene RT-PCR assay. FINDINGS: Between Sept 1, 2009, and April 10, 2015, we enrolled 1465 participants. Of 264 index cases with respiratory tract infection symptoms, 150 (57%) had a viral cause confirmed by RT-PCR. Of their 555 close contacts, 106 (19%) developed symptomatic respiratory tract infection with a proven viral cause during the observation window, of whom 60 (57%) had the same virus as their associated index case. Nine viruses were detected in total. The transcriptomic assay accurately predicted viral infection at the time of maximum symptom severity (mean area under the receiver operating characteristic curve [AUROC] 0·94 [95% CI 0·92-0·96]), as well as at 1 day (0·87 [95% CI 0·84-0·90]), 2 days (0·85 [0·82-0·88]), and 3 days (0·74 [0·71-0·77]) before peak illness, when symptoms were minimal or absent and 22 (62%) of 35 individuals, 25 (69%) of 36 individuals, and 24 (82%) of 29 individuals, respectively, had no detectable viral shedding. INTERPRETATION: Transcriptional biomarkers accurately predict and diagnose infection across diverse viral causes and stages of disease and thus might prove useful for guiding the administration of early effective therapy, quarantine decisions, and other clinical and public health interventions in the setting of endemic and pandemic infectious diseases. FUNDING: US Defense Advanced Research Projects Agency.


Subject(s)
RNA, Viral/genetics , Respiratory Tract Infections/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Adolescent , Adult , Biomarkers/blood , Female , Humans , Logistic Models , Male , Prospective Studies , RNA, Viral/blood , Respiratory Tract Infections/blood , Respiratory Tract Infections/genetics , Respiratory Tract Infections/virology , Transcription Factors/blood , Virus Diseases/blood , Virus Diseases/diagnosis , Virus Diseases/virology , Young Adult
6.
Nat Commun ; 12(1): 1079, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597532

ABSTRACT

SARS-CoV-2 infection has been shown to trigger a wide spectrum of immune responses and clinical manifestations in human hosts. Here, we sought to elucidate novel aspects of the host response to SARS-CoV-2 infection through RNA sequencing of peripheral blood samples from 46 subjects with COVID-19 and directly comparing them to subjects with seasonal coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infection triggers a powerful transcriptomic response in peripheral blood with conserved components that are heavily interferon-driven but also marked by indicators of early B-cell activation and antibody production. Interferon responses during SARS-CoV-2 infection demonstrate unique patterns of dysregulated expression compared to other infectious and healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present in early COVID-19, as are IL1 and JAK/STAT signaling pathways, which persist into late disease. Classifiers based on differentially expressed genes accurately distinguished SARS-CoV-2 infection from other acute illnesses (auROC 0.95 [95% CI 0.92-0.98]). The transcriptome in peripheral blood reveals both diverse and conserved components of the immune response in COVID-19 and provides for potential biomarker-based approaches to diagnosis.


Subject(s)
COVID-19/genetics , Gene Expression Profiling/methods , Leukocytes, Mononuclear/metabolism , Sequence Analysis, RNA/methods , Transcriptome/genetics , COVID-19/blood , COVID-19/virology , Cytokines/genetics , Host-Pathogen Interactions , Humans , Influenza, Human/genetics , Pneumonia, Bacterial/genetics , SARS-CoV-2/physiology , Signal Transduction/genetics
7.
medRxiv ; 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33398303

ABSTRACT

While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb); http://cpag.oit.duke.edu) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs with severe COVID-19 demonstrated colocalization of the GWAS signal of the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN), pointing to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches.

8.
medRxiv ; 2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32743603

ABSTRACT

In order to elucidate novel aspects of the host response to SARS-CoV-2 we performed RNA sequencing on peripheral blood samples across 77 timepoints from 46 subjects with COVID-19 and compared them to subjects with seasonal coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infection triggers a conserved transcriptomic response in peripheral blood that is heavily interferon-driven but also marked by indicators of early B-cell activation and antibody production. Interferon responses during SARS-CoV-2 infection demonstrate unique patterns of dysregulated expression compared to other infectious and healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present in early COVID-19, as are IL1 and JAK/STAT signaling pathways, that persist into late disease. Classifiers based on differentially expressed genes accurately distinguished SARS-CoV-2 infection from other acute illnesses (auROC 0.95). The transcriptome in peripheral blood reveals unique aspects of the immune response in COVID-19 and provides for novel biomarker-based approaches to diagnosis.

9.
Front Pharmacol ; 7: 383, 2016.
Article in English | MEDLINE | ID: mdl-27847476

ABSTRACT

Inflammation induced by traumatic brain injury (TBI) is complex, individual-specific, and associated with morbidity and mortality. We sought to develop dynamic, data-driven, predictive computational models of TBI-induced inflammation based on cerebrospinal fluid (CSF) biomarkers. Thirteen inflammatory mediators were determined in serial CSF samples from 27 severe TBI patients. The Glasgow Coma Scale (GCS) score quantifies the initial severity of the neurological status of the patient on a numerical scale from 3 to 15. The 6-month Glasgow Outcome Scale (GOS) score, the outcome variable, was taken as the variable to express and predict as a function of the other input variables. Data on each subject consisting of ten clinical (one-dimensional) variables, such as age, gender, and presence of infection, along with inflammatory biomarker time series were used to generate both multinomial logistic as well as probit models that predict low (poor outcome) or high (favorable outcome) levels of the GOS score. To determine if CSF inflammation biomarkers could predict TBI outcome, a logistic model for low (≤3; poor neurological outcome) or high levels (≥4; favorable neurological outcome) of the GOS score involving a full effect of the pro-inflammatory cytokine tumor necrosis factor-α and both linear and quadratic effects of the anti-inflammatory cytokine interleukin-10 was obtained. To better stratify patients as their pathology progresses over time, a technique called "Dynamic Profiling" was developed in which patients were clustered, using the spectral Laplacian and Hartigan's k-means method, into disjoint groups at different stages. Initial clustering was based on GCS score; subsequent clustering was performed based on clinical and demographic information and then further, sequential clustering based on the levels of individual inflammatory mediators over time. These clusters assess the risk of mortality of a new patient after each inflammatory mediator reading, based on the existing information in the previous data in the cluster to which the new patient belongs at the time, in essence acting as a "virtual clinician." Using the Dynamic Profiling method, we show examples that suggest that severe TBI patient neurological outcomes could be predicted as a function of time post-TBI using CSF inflammatory mediators.

SELECTION OF CITATIONS
SEARCH DETAIL