Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nature ; 626(7998): 385-391, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096903

ABSTRACT

A limitation of current SARS-CoV-2 vaccines is that they provide minimal protection against infection with current Omicron subvariants1,2, although they still provide protection against severe disease. Enhanced mucosal immunity may be required to block infection and onward transmission. Intranasal administration of current vaccines has proven inconsistent3-7, suggesting that alternative immunization strategies may be required. Here we show that intratracheal boosting with a bivalent Ad26-based SARS-CoV-2 vaccine results in substantial induction of mucosal humoral and cellular immunity and near-complete protection against SARS-CoV-2 BQ.1.1 challenge. A total of 40 previously immunized rhesus macaques were boosted with a bivalent Ad26 vaccine by the intramuscular, intranasal and intratracheal routes, or with a bivalent mRNA vaccine by the intranasal route. Ad26 boosting by the intratracheal route led to a substantial expansion of mucosal neutralizing antibodies, IgG and IgA binding antibodies, and CD8+ and CD4+ T cell responses, which exceeded those induced by Ad26 boosting by the intramuscular and intranasal routes. Intratracheal Ad26 boosting also led to robust upregulation of cytokine, natural killer, and T and B cell pathways in the lungs. After challenge with a high dose of SARS-CoV-2 BQ.1.1, intratracheal Ad26 boosting provided near-complete protection, whereas the other boosting strategies proved less effective. Protective efficacy correlated best with mucosal humoral and cellular immune responses. These data demonstrate that these immunization strategies induce robust mucosal immunity, suggesting the feasibility of developing vaccines that block respiratory viral infections.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunization, Secondary , Macaca mulatta , SARS-CoV-2 , Animals , Humans , Administration, Intranasal , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cytokines/immunology , Immunity, Mucosal/immunology , Immunization, Secondary/methods , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Injections, Intramuscular , Killer Cells, Natural/immunology , Lung/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology , SARS-CoV-2/classification , SARS-CoV-2/immunology , Trachea/immunology , Trachea/virology
2.
Hum Mol Genet ; 33(9): 739-751, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38272457

ABSTRACT

INTRODUCTION: Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. METHODS: 62 genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups, underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled with CellProfiler image analysis allowed for single-cell morphological profiling. RESULTS: Many gene knockouts invoked DEGs relating to matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology. TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and PLEKHA7 increased granularity and intensity of actin and the cell-membrane. CONCLUSION: High-throughput analysis of cellular structure and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong genetic basis.


Subject(s)
Glaucoma, Open-Angle , Intraocular Pressure , Humans , Intraocular Pressure/genetics , Genome-Wide Association Study , Glaucoma, Open-Angle/genetics , Genetic Predisposition to Disease , Tonometry, Ocular , Angiopoietin-Like Protein 2
3.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38995674

ABSTRACT

Mayaro virus (MAYV), a mosquito-borne alphavirus, is considered an emerging threat to public health with epidemic potential. Phylogenetic studies show the existence of three MAYV genotypes. In this study, we provide a preliminary analysis of the pathogenesis of all three MAYV genotypes in cynomolgus macaques (Macaca facicularis, Mauritian origin). Significant MAYV-specific RNAemia and viremia were detected during acute infection in animals challenged intravenously with the three MAYV genotypes, and strong neutralizing antibody responses were observed. MAYV RNA was detected at high levels in lymphoid tissues, joint muscle and synovia over 1 month after infection, suggesting that this model could serve as a promising tool in studying MAYV-induced chronic arthralgia, which can persist for years. Significant leucopenia was observed across all MAYV genotypes, peaking with RNAemia. Notable differences in the severity of acute RNAemia and composition of cytokine responses were observed among the three MAYV genotypes. Our model showed no outward signs of clinical disease, but several major endpoints for future MAYV pathology and intervention studies are described. Disruptions to normal blood cell counts and cytokine responses were markedly distinct from those observed in macaque models of CHIKV infection, underlining the importance of developing non-human primate models specific to MAYV infection.


Subject(s)
Alphavirus Infections , Alphavirus , Genotype , Macaca fascicularis , RNA, Viral , Viremia , Animals , Macaca fascicularis/virology , Alphavirus/genetics , Alphavirus/pathogenicity , Alphavirus/classification , Alphavirus/isolation & purification , Alphavirus Infections/virology , Alphavirus Infections/veterinary , Viremia/virology , RNA, Viral/genetics , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Disease Models, Animal , Phylogeny , Cytokines/genetics , Cytokines/blood
4.
Alzheimers Dement ; 20(6): 4260-4289, 2024 06.
Article in English | MEDLINE | ID: mdl-38687209

ABSTRACT

Experimental laboratory research has an important role to play in dementia prevention. Mechanisms underlying modifiable risk factors for dementia are promising targets for dementia prevention but are difficult to investigate in human populations due to technological constraints and confounds. Therefore, controlled laboratory experiments in models such as transgenic rodents, invertebrates and in vitro cultured cells are increasingly used to investigate dementia risk factors and test strategies which target them to prevent dementia. This review provides an overview of experimental research into 15 established and putative modifiable dementia risk factors: less early-life education, hearing loss, depression, social isolation, life stress, hypertension, obesity, diabetes, physical inactivity, heavy alcohol use, smoking, air pollution, anesthetic exposure, traumatic brain injury, and disordered sleep. It explores how experimental models have been, and can be, used to address questions about modifiable dementia risk and prevention that cannot readily be addressed in human studies. HIGHLIGHTS: Modifiable dementia risk factors are promising targets for dementia prevention. Interrogation of mechanisms underlying dementia risk is difficult in human populations. Studies using diverse experimental models are revealing modifiable dementia risk mechanisms. We review experimental research into 15 modifiable dementia risk factors. Laboratory science can contribute uniquely to dementia prevention.


Subject(s)
Dementia , Dementia/prevention & control , Humans , Animals , Risk Factors , Disease Models, Animal
5.
Int Urol Nephrol ; 56(8): 2467-2473, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38507157

ABSTRACT

INTRODUCTION: Pyeloplasty is the definitive management of ureteropelvic junction obstruction (UPJO). One of the challenging questions is when to perform pyeloplasty. We studied if improvement post-pyeloplasty in the first 3 months of life could show greater improvement in hydronephrosis than surgery at an older age. PATIENTS AND METHODS: Patients with postnatally diagnosed UPJO and underwent pyeloplasty in the first year of life were retrospectively reviewed. We excluded patients with concomitant vesicoureteral reflux, and patients who had pyeloplasty because of UTI or missed follow-up. Patients were divided into two groups, according to the age at pyeloplasty, before and after the age of 3 months. We collected patients' demographics, anteroposterior diameter of the renal pelvis (APD), SFU grade, renogram data, perioperative data (surgery duration, hospital stay, and ureteral stent duration) and postoperative ultrasound changes. The percentage of change of APD (Δ%APD) was calculatedusing the formula: Δ%APD = [ (initial APD-last APD)/initial APD] *100. RESULTS: We included 90 patients (93 renal units). 36 patients had pyeloplasty during the first 3 months of life and 57 patients at 3 -12 months. Patients' characteristics were similar in both groups except APD which was higher when pyeloplasty was done < 3 months of age (p = 0.02). Both groups had comparable perioperative parameters. After almost similar follow-up period of both groups. The Δ%APD was 58% when pyeloplasty was done < 3 months compared to 33% when was performed > 3 months (p = 0.009). Using Kaplan-Meier analysis, APD significantly improved when pyeloplasty was performed before the age of 3 months (p = 0.001). CONCLUSION: Early pyeloplasty, in the first 3 months of life, showed a significant improvement of APD postoperatively than those had surgery later. It is unclear if this will relate to less loss of renal function yet certainly this would be suspected and feel this finding provides some evidence for early intervention.


Subject(s)
Hydronephrosis , Kidney Pelvis , Ureteral Obstruction , Urologic Surgical Procedures , Humans , Hydronephrosis/surgery , Retrospective Studies , Kidney Pelvis/surgery , Infant , Female , Ureteral Obstruction/surgery , Ureteral Obstruction/complications , Male , Urologic Surgical Procedures/methods , Age Factors , Severity of Illness Index , Infant, Newborn , Treatment Outcome
6.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38895469

ABSTRACT

Purpose: CLN3 Batten disease (also known as Juvenile Neuronal Ceroid Lipofuscinosis; JNCL) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease iPSC-RPE cells show defective phagocytosis of photoreceptor outer segments (POSs). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods: Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3 Δ 7-8/ Δ 7-8 ( CLN3 ) Yucatan miniswine was also used to study the impact of CLN3 Δ 7-8/ Δ 7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3 Δ 7/8 and wild-type miniswine eyes were carried out at 6-, 36-, or 48-month age. Results: CLN3 Δ 7-8/ Δ 7-8 RPE ( CLN3 RPE) displayed reduced POS binding and consequently decreased uptake of POS compared to isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3 Δ 7-8/ Δ 7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months-of-age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions: CLN3 Δ 7-8/ Δ 7-8 mutation (that affects up to 85% patients) affects both RPE and POSs and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.

7.
Acta Physiol (Oxf) ; 240(9): e14201, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39007513

ABSTRACT

AIM: We aimed to test the hypothesis that a high-salt diet (HS) impairs NO signaling in kidney microvascular endothelial cells through a histone deacetylase 1 (HDAC1)-dependent mechanism. METHODS: Male Sprague Dawley rats were fed normal salt diet (NS; 0.49% NaCl) or HS (4% NaCl) for 2 weeks. NO signaling was assessed by measuring L-NAME induced vasoconstriction of the afferent arteriole using the blood perfused juxtamedullary nephron (JMN) preparation. In this preparation, kidneys were perfused with blood from a donor rat on a matching or different diet to that of the kidney donor. Kidney endothelial cells were isolated with magnetic activated cell sorting and HDAC1 activity was measured. RESULTS: We found HS-induced impaired NO signaling in the afferent arteriole. This was restored by inhibition of HDAC1 with MS-275. Consistent with these findings, HDAC1 activity was increased in kidney endothelial cells. We further found the loss of NO to be dependent upon the diet of the blood donor rather than the diet of the kidney donor and the plasma from HS-fed rats to be sufficient to induce impaired NO signaling. This indicates the presence of a humoral factor we termed plasma-derived endothelial dysfunction mediator (PDEM). Pretreatment with the antioxidants, PEG-SOD and PEG-catalase, as well as the NOS cofactor, tetrahydrobiopterin, restored NO signaling. CONCLUSION: We conclude that HS activates endothelial HDAC1 through PDEM leading to decreased NO signaling. This study provides novel insights into the molecular mechanisms by which a HS decreases renal microvascular endothelial NO signaling.


Subject(s)
Histone Deacetylase 1 , Kidney , Nitric Oxide , Rats, Sprague-Dawley , Signal Transduction , Sodium Chloride, Dietary , Animals , Male , Rats , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Histone Deacetylase 1/metabolism , Kidney/metabolism , Kidney/blood supply , Kidney/drug effects , Microvessels/metabolism , Microvessels/drug effects , Nitric Oxide/metabolism , Signal Transduction/drug effects
8.
Heliyon ; 10(14): e34587, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39130445

ABSTRACT

The loss of upper and lower motor neurons, and their axons is central to the loss of motor function and death in amyotrophic lateral sclerosis (ALS). Due to the diverse range of genetic and environmental factors that contribute to the pathogenesis of ALS, there have been difficulties in developing effective therapies for ALS. One emerging dichotomy is that protection of the neuronal cell soma does not prevent axonal vulnerability and degeneration, suggesting the need for targeted therapeutics to prevent axon degeneration. Post-translational modifications of protein acetylation can alter the function, stability and half-life of individual proteins, and can be enzymatically modified by histone acetyltransferases (HATs) and histone deacetyltransferases (HDACs), which add, or remove acetyl groups, respectively. Maintenance of post-translational microtubule acetylation has been suggested as a mechanism to stabilize axons, prevent axonal loss and neurodegeneration in ALS. This study used an orally dosed potent HDAC6 inhibitor, ACY-738, prevent deacetylation and stabilize microtubules in the mSOD1G93A mouse model of ALS. Co-treatment with riluzole was performed to determine any effects or drug interactions and potentially enhance preclinical research translation. This study shows ACY-738 treatment increased acetylation of microtubules in the spinal cord of mSOD1G93A mice, reduced lower motor neuron degeneration in female mice, ameliorated reduction in peripheral nerve axon puncta size, but did not prevent overt motor function decline. The current study also shows peripheral nerve axon puncta size to be partially restored after treatment with riluzole and highlights the importance of co-treatment to measure the potential effects of therapeutics in ALS.

9.
Stem Cell Res Ther ; 15(1): 59, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433209

ABSTRACT

BACKGROUND: Pericytes are multifunctional contractile cells that reside on capillaries. Pericytes are critical regulators of cerebral blood flow and blood-brain barrier function, and pericyte dysfunction may contribute to the pathophysiology of human neurological diseases including Alzheimers disease, multiple sclerosis, and stroke. Induced pluripotent stem cell (iPSC)-derived pericytes (iPericytes) are a promising tool for vascular research. However, it is unclear how iPericytes functionally compare to primary human brain vascular pericytes (HBVPs). METHODS: We differentiated iPSCs into iPericytes of either the mesoderm or neural crest lineage using established protocols. We compared iPericyte and HBVP morphologies, quantified gene expression by qPCR and bulk RNA sequencing, and visualised pericyte protein markers by immunocytochemistry. To determine whether the gene expression of neural crest iPericytes, mesoderm iPericytes or HBVPs correlated with their functional characteristics in vitro, we quantified EdU incorporation following exposure to the key pericyte mitogen, platelet derived growth factor (PDGF)-BB and, contraction and relaxation in response to the vasoconstrictor endothelin-1 or vasodilator adenosine, respectively. RESULTS: iPericytes were morphologically similar to HBVPs and expressed canonical pericyte markers. However, iPericytes had 1864 differentially expressed genes compared to HBVPs, while there were 797 genes differentially expressed between neural crest and mesoderm iPericytes. Consistent with the ability of HBVPs to respond to PDGF-BB signalling, PDGF-BB enhanced and a PDGF receptor-beta inhibitor impaired iPericyte proliferation. Administration of endothelin-1 led to iPericyte contraction and adenosine led to iPericyte relaxation, of a magnitude similar to the response evoked in HBVPs. We determined that neural crest iPericytes were less susceptible to PDGFR beta inhibition, but responded most robustly to vasoconstrictive mediators. CONCLUSIONS: iPericytes express pericyte-associated genes and proteins and, exhibit an appropriate physiological response upon exposure to a key endogenous mitogen or vasoactive mediators. Therefore, the generation of functional iPericytes would be suitable for use in future investigations exploring pericyte function or dysfunction in neurological diseases.


Subject(s)
Induced Pluripotent Stem Cells , Pericytes , Humans , Becaplermin/pharmacology , Endothelin-1/pharmacology , Adenosine , Cell Proliferation
10.
Ophthalmol Sci ; 4(4): 100504, 2024.
Article in English | MEDLINE | ID: mdl-38682030

ABSTRACT

Purpose: Genome-wide association studies have recently uncovered many loci associated with variation in intraocular pressure (IOP). Artificial intelligence (AI) can be used to interrogate the effect of specific genetic knockouts on the morphology of trabecular meshwork cells (TMCs) and thus, IOP regulation. Design: Experimental study. Subjects: Primary TMCs collected from human donors. Methods: Sixty-two genes at 55 loci associated with IOP variation were knocked out in primary TMC lines. All cells underwent high-throughput microscopy imaging after being stained with a 5-channel fluorescent cell staining protocol. A convolutional neural network was trained to distinguish between gene knockout and normal control cell images. The area under the receiver operator curve (AUC) metric was used to quantify morphological variation in gene knockouts to identify potential pathological perturbations. Main Outcome Measures: Degree of morphological variation as measured by deep learning algorithm accuracy of differentiation from normal controls. Results: Cells where LTBP2 or BCAS3 had been perturbed demonstrated the greatest morphological variation from normal TMCs (AUC 0.851, standard deviation [SD] 0.030; and AUC 0.845, SD 0.020, respectively). Of 7 multigene loci, 5 had statistically significant differences in AUC (P < 0.05) between genes, allowing for pathological gene prioritization. The mitochondrial channel most frequently showed the greatest degree of morphological variation (33.9% of cell lines). Conclusions: We demonstrate a robust method for functionally interrogating genome-wide association signals using high-throughput microscopy and AI. Genetic variations inducing marked morphological variation can be readily identified, allowing for the gene-based dissection of loci associated with complex traits. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

11.
Sci Transl Med ; 16(740): eadl4317, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536937

ABSTRACT

The 2022-2023 mpox outbreak triggered vaccination efforts using smallpox vaccines that were approved for mpox, including modified vaccinia Ankara (MVA; JYNNEOS), which is a safer alternative to live replicating vaccinia virus (ACAM2000). Here, we compare the immunogenicity and protective efficacy of JYNNEOS by the subcutaneous or intradermal routes, ACAM2000 by the percutaneous route, and subunit Ad35 vector-based L1R/B5R or L1R/B5R/A27L/A33R vaccines by the intramuscular route in rhesus macaques. All vaccines provided robust protection against high-dose intravenous mpox virus challenge with the current outbreak strain, with ACAM2000 providing near complete protection and JYNNEOS and Ad35 vaccines providing robust but incomplete protection. Protection correlated with neutralizing antibody responses as well as L1R/M1R- and B5R/B6R-specific binding antibody responses, although additional immune responses likely also contributed to protection. This study demonstrates the protective efficacy of multiple vaccine platforms against mpox virus challenge, including both current clinical vaccines and vectored subunit vaccines.


Subject(s)
Mpox (monkeypox) , Smallpox Vaccine , Animals , Vaccinia virus/genetics , Macaca mulatta , Antibodies, Viral , Vaccines, Subunit
12.
Nat Commun ; 15(1): 6894, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134521

ABSTRACT

SARS-CoV-2 has the capacity to evolve mutations that escape vaccine- and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool that would maintain its efficacy despite the ongoing emergence of new variants. Here, we challenge male rhesus macaques with SARS-CoV-2 Delta-the most pathogenic variant in a highly susceptible animal model. At the time of challenge, we also treat the macaques with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment equivalently suppresses virus replication in both upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 does not block the development of virus-specific T- and B-cell responses and does not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 , SARS-CoV-2 , Virus Replication , Animals , Humans , Male , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , Chlorocebus aethiops , COVID-19/virology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Drug Treatment , Disease Models, Animal , Macaca mulatta , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Virus Replication/drug effects
15.
Int. braz. j. urol ; 31(5): 477-481, Sept.-Oct. 2005. ilus
Article in English | LILACS | ID: lil-418170

ABSTRACT

INTRODUCTION: The urofacial or Ochoa syndrome is a rare disease characterized by the presence of functional obstructive uropathy associated with peculiar facial features when patients attempt to smile or laugh. Unfortunately, many of these patients remain without proper diagnosis or adequate treatment due to lack of recognition of the disease. This can ultimately result in upper tract deterioration and eventual renal failure. We present our experience with this rare syndrome. MATERIALS AND METHODS: We identified 3 patients who presented initially with acute renal failure, urinary tract infection (UTI) and severe dysfunctional elimination. All patients were thoroughly evaluated, including screening for spinal cord anomalies, and were subsequently diagnosed with urofacial syndrome. RESULTS: At the outset, the two older patients (aged 4 and 9 years) presented with the typical facial features when attempting to smile or laugh. One patient in the newborn period presented with urinary and fecal retention and septicemia and, to our knowledge, represents the youngest case of urofacial syndrome reported so far. All patients were evaluated with ultrasonography, renal scan, voiding cystourethrogram (VCUG) and urodynamics. Findings included hydronephrosis and a thick-walled, trabeculated bladder with poor compliance and detrusor hypereflexia respectively in each patient. All were subsequently treated with clean intermittent catheterization (CIC), antibiotic prophylaxis and anticholinergic therapy. One patient required appendicovesicostomy for CIC due to discomfort secondary to a sensate urethra. CONCLUSIONS: Our series demonstrates that early recognition of this rare syndrome is necessary to adequately treat and prevent upper tract deterioration in these unique individuals. Although the urofacial is difficult to diagnose in infants, cognizance must be maintained in order to prevent severe subsequent sequalae.


Subject(s)
Child , Child, Preschool , Female , Humans , Infant, Newborn , Male , Diagnostic Techniques, Urological , Facies , Smiling , Urologic Diseases/diagnosis , Early Diagnosis , Syndrome , Urologic Diseases/drug therapy , Urologic Diseases/surgery
SELECTION OF CITATIONS
SEARCH DETAIL