Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Development ; 151(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38223992

ABSTRACT

The generation of the post-cranial embryonic body relies on the coordinated production of spinal cord neurectoderm and presomitic mesoderm cells from neuromesodermal progenitors (NMPs). This process is orchestrated by pro-neural and pro-mesodermal transcription factors that are co-expressed in NMPs together with Hox genes, which are essential for axial allocation of NMP derivatives. NMPs reside in a posterior growth region, which is marked by the expression of Wnt, FGF and Notch signalling components. Although the importance of Wnt and FGF in influencing the induction and differentiation of NMPs is well established, the precise role of Notch remains unclear. Here, we show that the Wnt/FGF-driven induction of NMPs from human embryonic stem cells (hESCs) relies on Notch signalling. Using hESC-derived NMPs and chick embryo grafting, we demonstrate that Notch directs a pro-mesodermal character at the expense of neural fate. We show that Notch also contributes to activation of HOX gene expression in human NMPs, partly in a non-cell-autonomous manner. Finally, we provide evidence that Notch exerts its effects via the establishment of a negative-feedback loop with FGF signalling.


Subject(s)
Body Patterning , Genes, Homeobox , Animals , Chick Embryo , Humans , Body Patterning/genetics , Cell Differentiation/genetics , Mesoderm/metabolism , Spinal Cord , Gene Expression , Gene Expression Regulation, Developmental
2.
Gut ; 73(9): 1441-1453, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38816188

ABSTRACT

OBJECTIVE: Hirschsprung disease (HSCR) is a severe congenital disorder affecting 1:5000 live births. HSCR results from the failure of enteric nervous system (ENS) progenitors to fully colonise the gastrointestinal tract during embryonic development. This leads to aganglionosis in the distal bowel, resulting in disrupted motor activity and impaired peristalsis. Currently, the only viable treatment option is surgical resection of the aganglionic bowel. However, patients frequently suffer debilitating, lifelong symptoms, with multiple surgical procedures often necessary. Hence, alternative treatment options are crucial. An attractive strategy involves the transplantation of ENS progenitors generated from human pluripotent stem cells (hPSCs). DESIGN: ENS progenitors were generated from hPSCs using an accelerated protocol and characterised, in detail, through a combination of single-cell RNA sequencing, protein expression analysis and calcium imaging. We tested ENS progenitors' capacity to integrate and affect functional responses in HSCR colon, after ex vivo transplantation to organotypically cultured patient-derived colonic tissue, using organ bath contractility. RESULTS: We found that our protocol consistently gives rise to high yields of a cell population exhibiting transcriptional and functional hallmarks of early ENS progenitors. Following transplantation, hPSC-derived ENS progenitors integrate, migrate and form neurons/glia within explanted human HSCR colon samples. Importantly, the transplanted HSCR tissue displayed significantly increased basal contractile activity and increased responses to electrical stimulation compared with control tissue. CONCLUSION: Our findings demonstrate, for the first time, the potential of hPSC-derived ENS progenitors to repopulate and increase functional responses in human HSCR patient colonic tissue.


Subject(s)
Colon , Enteric Nervous System , Hirschsprung Disease , Hirschsprung Disease/surgery , Hirschsprung Disease/therapy , Humans , Pluripotent Stem Cells , Stem Cell Transplantation/methods , Cell Differentiation
3.
Dev Biol ; 489: 110-117, 2022 09.
Article in English | MEDLINE | ID: mdl-35718236

ABSTRACT

The production of the tissues that make up the mammalian embryonic trunk takes place in a head-tail direction, via the differentiation of posteriorly-located axial progenitor populations. These include bipotent neuromesodermal progenitors (NMPs), which generate both spinal cord neurectoderm and presomitic mesoderm, the precursor of the musculoskeleton. Over the past few years, a number of studies have described the derivation of NMP-like cells from mouse and human pluripotent stem cells (PSCs). In turn, these have greatly facilitated the establishment of PSC differentiation protocols aiming to give rise efficiently to posterior mesodermal and neural cell types, which have been particularly challenging to produce using previous approaches. Moreover, the advent of 3-dimensional-based culture systems incorporating distinct axial progenitor-derived cell lineages has opened new avenues toward the functional dissection of early patterning events and cell vs non-cell autonomous effects. Here, we provide a brief overview of the applications of these cell types in disease modelling and cell therapy and speculate on their potential uses in the future.


Subject(s)
Body Patterning , Neural Stem Cells , Animals , Body Patterning/physiology , Cell Differentiation/physiology , Cell Lineage , Humans , Mammals , Mesoderm , Mice
4.
Biochem Soc Trans ; 50(1): 499-511, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35015077

ABSTRACT

The neural crest (NC) is a multipotent cell population which can give rise to a vast array of derivatives including neurons and glia of the peripheral nervous system, cartilage, cardiac smooth muscle, melanocytes and sympathoadrenal cells. An attractive strategy to model human NC development and associated birth defects as well as produce clinically relevant cell populations for regenerative medicine applications involves the in vitro generation of NC from human pluripotent stem cells (hPSCs). However, in vivo, the potential of NC cells to generate distinct cell types is determined by their position along the anteroposterior (A-P) axis and, therefore the axial identity of hPSC-derived NC cells is an important aspect to consider. Recent advances in understanding the developmental origins of NC and the signalling pathways involved in its specification have aided the in vitro generation of human NC cells which are representative of various A-P positions. Here, we explore recent advances in methodologies of in vitro NC specification and axis patterning using hPSCs.


Subject(s)
Neural Crest , Pluripotent Stem Cells , Cell Differentiation , Humans , Neural Crest/metabolism , Neurons
5.
EMBO Rep ; 19(4)2018 04.
Article in English | MEDLINE | ID: mdl-29514862

ABSTRACT

The BMP and Wnt signalling pathways determine axis specification during embryonic development. Our previous work has shown that PAWS1 (also known as FAM83G) interacts with SMAD1 and modulates BMP signalling. Here, surprisingly, we show that overexpression of PAWS1 in Xenopus embryos activates Wnt signalling and causes complete axis duplication. Consistent with these observations in Xenopus, Wnt signalling is diminished in U2OS osteosarcoma cells lacking PAWS1, while BMP signalling is unaffected. We show that PAWS1 interacts and co-localises with the α isoform of casein kinase 1 (CK1), and that PAWS1 mutations incapable of binding CK1 fail both to activate Wnt signalling and to elicit axis duplication in Xenopus embryos.


Subject(s)
Casein Kinase Ialpha/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Wnt Signaling Pathway , Animals , Axin Protein/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Line, Tumor , Cell Nucleus , Ectopic Gene Expression , Gene Expression , Gene Knockout Techniques , Humans , Intracellular Signaling Peptides and Proteins/genetics , Multiprotein Complexes/metabolism , Phosphorylation , Protein Binding , Protein Transport , Xenopus , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , beta Catenin/metabolism
6.
Am J Hum Genet ; 99(1): 125-38, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27374770

ABSTRACT

DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.


Subject(s)
Cell Cycle Proteins/genetics , Congenital Microtia/genetics , Craniosynostoses/genetics , Growth Disorders/genetics , Micrognathism/genetics , Mutation , Patella/abnormalities , Adolescent , Adult , Alleles , Alternative Splicing/genetics , Amino Acid Sequence , Amnion/cytology , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/metabolism , Cell Line , Cells, Cultured , Child , Child, Preschool , DNA Mutational Analysis , DNA Replication , Exome/genetics , Exons/genetics , Female , Genetic Association Studies , Humans , Male , Models, Molecular , Protein Conformation , Syndrome , Young Adult
7.
Open Biol ; 14(10): 240194, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39437839

ABSTRACT

The FAM83 (Family with sequence similarity 83) family is highly conserved in vertebrates, but little is known of the functions of these proteins beyond their association with oncogenesis. Of the family, FAM83F is of particular interest because it is the only membrane-targeted FAM83 protein. When overexpressed, FAM83F activates the canonical Wnt signalling pathway and binds to and stabilizes p53; it therefore interacts with two pathways often dysregulated in disease. Insights into gene function can often be gained by studying the roles they play during development, and here we report the generation of fam83f knock-out (KO) zebrafish, which we have used to study the role of Fam83f in vivo. We show that endogenous fam83f is most strongly expressed in the hatching gland of developing zebrafish embryos, and that fam83f KO embryos hatch earlier than their wild-type (WT) counterparts, despite developing at a comparable rate. We also demonstrate that fam83f KO embryos are more sensitive to ionizing radiation than WT embryos-an unexpected finding, bearing in mind the previously reported ability of FAM83F to stabilize p53. Transcriptomic analysis shows that loss of fam83f leads to downregulation of phosphatidylinositol-3-phosphate (PI(3)P) binding proteins and impairment of cellular degradation pathways, particularly autophagy, a crucial component of the DNA damage response. Finally, we show that Fam83f protein is itself targeted to the lysosome when overexpressed in HEK293T cells, and that this localization is dependent upon a C' terminal signal sequence. The zebrafish lines we have generated suggest that Fam83f plays an important role in autophagic/lysosomal processes, resulting in dysregulated hatching and increased sensitivity to genotoxic stress in vivo.


Subject(s)
Autophagy , DNA Damage , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Autophagy/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Gene Expression Regulation, Developmental , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Gene Knockout Techniques , Phosphatidylinositol Phosphates/metabolism , Humans , Embryo, Nonmammalian/metabolism , Lysosomes/metabolism
8.
Stem Cell Res ; 65: 102954, 2022 12.
Article in English | MEDLINE | ID: mdl-36332468

ABSTRACT

Spinal muscular atrophy with lower extremity dominant (SMALED) is a hereditary neuromuscular disorder characterized by degeneration of spinal cord motor neurons resulting in lower limbs muscle weakness and paralysis. Mutations in DYNC1H1, which encodes BICD2, a multifunctional adaptor for microtubule motor proteins, cause the disorder. Here, we generated four induced pluripotent stem cell (iPSC) lines from patients with SMALED. Dermal fibroblasts were obtained from the MRC neuromuscular disease biobank and reprogrammed using non-integrating mRNA-based protocol. Characterization of the four iPSC lines included karyotyping and Sanger sequencing, while the expression of associated markers confirmed pluripotency and differentiation potential.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Atrophy, Spinal , Humans , Muscular Atrophy, Spinal/genetics , Muscular Atrophy
9.
Stem Cell Reports ; 17(4): 894-910, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35334218

ABSTRACT

The spinal cord emerges from a niche of neuromesodermal progenitors (NMPs) formed and maintained by WNT/fibroblast growth factor (FGF) signals at the posterior end of the embryo. NMPs can be generated from human pluripotent stem cells and hold promise for spinal cord replacement therapies. However, NMPs are transient, which compromises production of the full range of rostrocaudal spinal cord identities in vitro. Here we report the generation of NMP-derived pre-neural progenitors (PNPs) with stem cell-like self-renewal capacity. PNPs maintain pre-spinal cord identity for 7-10 passages, dividing to self-renew and to make neural crest progenitors, while gradually adopting a more posterior identity by activating colinear HOX gene expression. The HOX clock can be halted through GDF11-mediated signal inhibition to produce a PNP and NC population with a thoracic identity that can be maintained for up to 30 passages.


Subject(s)
Neural Crest , Pluripotent Stem Cells , Body Patterning/genetics , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/genetics , Fibroblast Growth Factors/metabolism , Growth Differentiation Factors/metabolism , Humans , Neural Crest/metabolism , Pluripotent Stem Cells/metabolism , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL