Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters

Publication year range
1.
EMBO J ; 42(13): e112095, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37226896

ABSTRACT

The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.


Subject(s)
Botulinum Toxins, Type A , Botulinum Toxins, Type A/metabolism , Cell Membrane/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Synaptic Vesicles/metabolism , Animals , Rats
2.
Biomacromolecules ; 19(3): 721-730, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29437383

ABSTRACT

Capturing cell-secreted extracellular matrix (ECM) proteins through cooperative binding with high specificity and affinity is an important function of native tissue matrices during both tissue homeostasis and repair. However, while synthetic hydrogels, such as those based on poly(ethylene glycol) (PEG), are often proposed as ideal materials to deliver human mesenchymal stem cells (hMSCs) to sites of injury to enable tissue repair, they do not have this capability-a capability that would enable cells to actively remodel their local extracellular microenvironment and potentially provide the required feedback control for more effective tissue genesis. In this work, we detail a methodology that engenders poly(ethylene glycol) (PEG)-based two-dimensional substrates and three-dimensional porous hydrogels with the ability to capture desired extracellular matrix (ECM) proteins with high specificity. This "encoded" ECM protein capture is achieved by decorating the PEG-based materials with protein binding peptides (PBPs) synthesized to be specific in their binding of fibronectin, laminin, and collagen I, which are not only the most omnipresent ECM proteins in human tissues but, as we confirmed, are also secreted to differing extents by hMSCs under in vitro maintenance conditions. By encapsulating hMSCs into these PBP-functionalized hydrogels, and culturing them in protein-free maintenance media, we demonstrate that these PBPs not only actively recruit targeted ECM proteins as they are secreted from hMSCs but also retain them to much higher levels compared to nonfunctionalized gels. This novel approach thus enables the fabrication of encoded surfaces and hydrogels that capture cell-secreted proteins, with high specificity and affinity, in a programmable manner, ready for applications in many bioengineering applications, including bioactive surface coatings, bioassays, stem cell culture, tissue engineering, and regenerative medicine.


Subject(s)
Extracellular Matrix Proteins , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Peptides/chemistry , Polyethylene Glycols/chemistry , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/isolation & purification , Extracellular Matrix Proteins/metabolism , Humans , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/cytology
3.
Macromol Rapid Commun ; 38(8)2017 Apr.
Article in English | MEDLINE | ID: mdl-28221701

ABSTRACT

Advanced polymerization methodologies, such as reversible addition-fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology "rapid one-pot sequential aqueous RAFT" or "rosa-RAFT," in which well-defined homo-, copolymer, and mikto-arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an "arm-first" approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications.


Subject(s)
Biocompatible Materials/chemical synthesis , Combinatorial Chemistry Techniques/methods , Polymerization , Polymers/chemical synthesis , Acrylamide/chemistry , Acrylates/chemistry , Biocompatible Materials/chemistry , Models, Chemical , Molecular Structure , Nanostructures/chemistry , Polymers/chemistry , Reproducibility of Results
4.
J Neurosci ; 35(15): 6179-94, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25878289

ABSTRACT

Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity.


Subject(s)
Autophagy/drug effects , Botulinum Toxins, Type A/metabolism , Hippocampus/cytology , Neurons/cytology , Neurotoxins/metabolism , Androstadienes/pharmacology , Animals , Animals, Newborn , Autophagy/physiology , Axonal Transport/drug effects , Axonal Transport/physiology , Botulinum Toxins, Type A/pharmacology , Cells, Cultured , Enzyme Inhibitors/pharmacology , Female , In Vitro Techniques , Macrolides/pharmacology , Male , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Neurons/drug effects , Neurons/ultrastructure , Neurotoxins/pharmacology , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Receptors, Nerve Growth Factor/metabolism , Synaptosomal-Associated Protein 25/metabolism , Wortmannin
5.
Biomacromolecules ; 16(1): 389-403, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25469767

ABSTRACT

Self-assembled pseudopolyrotaxane (PPR) hydrogels formed from Pluronic polymers and α-cyclodextrin (α-CD) have been shown to display a wide range of tailorable physical and chemical properties that may see them exploited in a multitude of future biomedical applications. Upon the mixing of both components, these self-assembling hydrogels reach a metastable thermodynamic state that is defined by the concentrations of both components in solution and the temperature. However, at present, their potential is severely limited by the very nature by which they form and hence also disassemble. Even if the temperature is kept constant, PPR hydrogels will dissociate and collapse within a few hours when immersed in a liquid (such as cell culture media) that contains a lower concentrations of, or no, Pluronic or α-CD due to differences in chemical potential driving dissolution. In this article, an enzymatically mediated covalent cross-linking function and branched eight-arm poly(ethylene glycol) (PEG) were thus introduced into the PPR hydrogels to improve their robustness to such environmental changes. The eight-arm PEG also acted as an end-capping group to prevent the dethreading of the α-CD molecules. The covalent cross-linking successfully extended the lifetime of the hydrogels when placed in cell culture media from a few hours to up to 1 week, with the ability to control the degradation rate (now initiated by hydrolysis of the introduced ester bonds and not by dissolution) by changing the amount of eight-arm PEG present in the hydrogels. Highly tunable hydrogels were obtained with an elastic modulus between 20 and 410 kPa and a viscous modulus between 150 Pa and 22 kPa by varying the concentrations of α-CD and eight-arm PEG. Sustained release of a model drug from the hydrogels was achieved, and viability of mouse fibroblasts encapsulated in these hydrogels was assessed. These self-assembling, hydrolytically degradable, and highly tunable hydrogels are seen to have potential applications in tissue engineering relying on controlled drug or cell delivery to sites targeted for repair.


Subject(s)
Cyclodextrins/chemistry , Hydrogels/chemistry , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Rotaxanes/chemistry , Animals , Culture Media , Drug Delivery Systems , Mice , NIH 3T3 Cells , Tissue Engineering
6.
Biomacromolecules ; 16(1): 275-83, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25469689

ABSTRACT

In the fields of tissue engineering and regenerative medicine, many researchers and companies alike are investigating the utility of concentrated mesenchymal stem cell suspensions as therapeutic injectables, with the hope of regenerating the damaged tissue site. These cells are seldom used alone, being instead combined with synthetic biomacromolecules, such as branched poly(ethylene glycol) (PEG) polymers, in order to form cross-linked hydrogels postinjection. In this article, we present the results of a detailed experimental and analytical investigation into the impacts of a range of eight-arm PEG polymers, each presenting functional end groups, on the rheological properties of concentrated living cells of mesenchymal origin. Using two-photon confocal microscopy, we confirmed that the aggregates formed by the cells are fractal structures, the dimension of which changed with PEG polymer type addition. From these results and the observed substantial variation in rheological footprint with increasing volume fraction and different PEG polymer type, we propose a number of mechanisms driving such structural changes. Lastly, we derived a modified Krieger-Dougherty model to produce a master curve for the relative viscosity as a function of volume fraction over the range of conditions investigated (including shear stress and PEG polymer type), from which we extract the adhesion force between individual cells within these concentrated suspensions. The outcomes of this study provide new insights into the complex interactions occurring in concentrated mesenchymal cell suspensions when combined with synthetic biomacromolecules commonly used as precursors in tissue engineering hydrogels, highlighting their substantial impacts on the resultant rheological footprint.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Mesenchymal Stem Cells/physiology , Polyethylene Glycols/chemistry , Animals , Mice , Microscopy, Confocal , NIH 3T3 Cells , Regenerative Medicine , Rheology , Stress, Mechanical , Suspensions/chemistry , Tissue Engineering
7.
J Cell Sci ; 125(Pt 2): 317-27, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22250203

ABSTRACT

Mesenchymal stem cells (MSCs) have attracted great interest in recent years for tissue engineering and regenerative medicine applications due to their ease of isolation and multipotent differentiation capacity. In the past, MSC research has focussed on the effects of soluble cues, such as growth factors and cytokines; however, there is now increasing interest in understanding how parameters such as substrate modulus, specific extracellular matrix (ECM) components and the ways in which these are presented to the cell can influence MSC properties. Here we use surfaces of self-assembled maleimide-functionalized polystyrene-block-poly(ethylene oxide) copolymers (PS-PEO-Ma) to investigate how the spatial arrangement of cell adhesion ligands affects MSC behaviour. By changing the ratio of PS-PEO-Ma in mixtures of block copolymer and polystyrene homopolymer, we can create surfaces with lateral spacing of the PEO-Ma domains ranging from 34 to 62 nm. Through subsequent binding of cysteine-GRGDS peptides to the maleimide-terminated end of the PEO chains in each of these domains, we are able to present tailored surfaces of controlled lateral spacing of RGD (arginine-glycine-aspartic acid) peptides to MSCs. We demonstrate that adhesion of MSCs to the RGD-functionalized block-copolymer surfaces is through specific attachment to the presented RGD motif and that this is mediated by α5, αV, ß1 and ß3 integrins. We show that as the lateral spacing of the peptides is increased, the ability of the MSCs to spread is diminished and that the morphology changes from well-spread cells with normal fibroblastic morphology and defined stress-fibres, to less-spread cells with numerous cell protrusions and few stress fibres. In addition, the ability of MSCs to form mature focal adhesions is reduced on substrates with increased lateral spacing. Finally, we investigate differentiation and use qRT-PCR determination of gene expression levels and a quantitative alkaline phosphatase assay to show that MSC osteogenesis is reduced on surfaces with increased lateral spacing while adipogenic differentiation is increased. We show here, for the first time, that the lateral spacing of adhesion peptides affects human MSC (hMSC) properties and might therefore be a useful parameter with which to modify hMSC behaviour in future tissue engineering strategies.


Subject(s)
Mesenchymal Stem Cells/cytology , Oligopeptides/metabolism , Adipogenesis , Cell Adhesion , Cell Movement , Cells, Cultured , Cytoskeleton/ultrastructure , Focal Adhesions , Humans , Integrin alpha Chains/metabolism , Integrin beta Chains/metabolism , Mesenchymal Stem Cells/physiology , Mesenchymal Stem Cells/ultrastructure , Osteogenesis , Polyethylene Glycols/chemistry , Polystyrenes/chemistry
8.
Biomacromolecules ; 15(1): 43-52, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24274693

ABSTRACT

To encourage cell adhesion on biomaterial surfaces in a more facile, safe, and low-cost fashion, we have demonstrated a noncovalent approach to spatially conjugate ß-cyclodextrin (ß-CD) modified peptide sequences onto self-assembled adamantane-terminated polystyrene-b-poly(ethylene oxide) (PS-PEO-Ada) films through inclusion complexing interactions between ß-CDs and adamantane. By simply blending various ratios of unmodified PS-PEO with a newly synthesized PS-PEO-Ada, we produced PS polymer films that displayed well-organized adamantine-decorated cylindrical PEO domains with varying average interdomain spacings ranging from 29 to 47 nm. The presence of the adamantane moiety at the terminal end of the PEO chain permitted rapid, and importantly, oriented attachment of ß-CD functionalized peptides onto these surfaces. This one-step process not only converted these proven nonadherent PS-PEO surfaces into adherent surfaces, but also permitted precisely controlled presentation and surface distribution of the conjugated peptides. The utility of these surfaces as cell culture substrates was confirmed with human mesenchymal stem cells (hMSCs). We observed that with increasing PS-PEO-Ada content in the PEO cylindrical domains, these novel polymer films displayed improved cell attachment and spreading, with notable differences in hMSC morphology. We further confirmed that this novel PS-PEO-Ada surface provides a flexible platform for facile conjugation of mixtures of ß-CDs functionalized with different peptides, specifically RGD and IKVAV peptides. The cell adhesion and spreading assays on these surfaces indicated that the morphologies of hMSCs can be easily manipulated, while no significant changes in cell attachment were observed. The lock-and-key peptide conjugation technique presented in this work is applicable to any substrate that incorporates a moiety capable of forming inclusion complexes with α-, ß-, and γ-CDs, providing a facile and flexible method by which to construct peptide-conjugated biomaterial substrates for a multitude of applications in fields ranging from cell bioprocessing and regenerative medicine to cell-based assays.


Subject(s)
Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/physiology , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/physiology , Cell Adhesion/physiology , Cells, Cultured , Humans , Surface Properties
9.
Lab Chip ; 24(3): 537-548, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38168806

ABSTRACT

The human body is made up of approximately 40 trillion cells in close contact, with the cellular density of individual tissues varying from 1 million to 1 billion cells per cubic centimetre. Interactions between different cell types (termed heterotypic) are thus common in vivo. Communication between cells can take the form of direct cell-cell contact mediated by plasma membrane proteins or through paracrine signalling mediated through the release, diffusion, and receipt of soluble factors. There is currently no systematic method to investigate the relative contributions of these mechanisms to cell behaviour. In this paper, we detail the conception, development and validation of a microfluidic device that allows cell-cell contact and paracrine signalling in defined areas and over a variety of biologically relevant length scales, referred to as the interactome-device or 'I-device'. Importantly, by intrinsic device design features, cells in different regions in the device are exposed to four different interaction types, including a) no heterotypic cell interaction, b) only paracrine signalling, c) only cell-cell direct contact, or d) both forms of interaction (paracrine and cell-cell direct contact) together. The device design was validated by both mathematical modelling and experiments. Perfused stem cell culture over the medium term and the formation of direct contact between cells in the culture chambers was confirmed. The I-device offers significant flexibility, being able to be applied to any combination of adherent cells to determine the relative contributions of different communication mechanisms to cellular outcomes.


Subject(s)
Cell Communication , Cell Culture Techniques , Humans , Coculture Techniques , Paracrine Communication , Lab-On-A-Chip Devices
10.
Eur Cell Mater ; 25: 190-203, 2013 Feb 27.
Article in English | MEDLINE | ID: mdl-23444237

ABSTRACT

We describe two studies encompassing the iterative refinement of a polymer-based rhBMP-2 delivery system for bone tissue engineering. Firstly, we compared the bone-forming capacity of porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds produced by thermally induced phase separation (TIPS) with non-porous solvent cast poly(D,L-lactic acid) (PDLLA) used previously. Secondly, we examined the potential synergy between rhBMP-2 and local bisphosphonate in the PLGA scaffold system. In vivo ectopic bone formation studies were performed in C57BL6/J mice. Polymer scaffolds containing 0, 5, 10 or 20 µg rhBMP-2 were inserted into the dorsal musculature. At all rhBMP-2 doses, porous PLGA produced significantly higher bone volume (BV, mm3) than the solid PDLLA scaffolds. Next, porous PLGA scaffolds containing 10 µg rhBMP-2 ± 0.2, or 2 µg zoledronic acid (ZA) were inserted into the hind-limb musculature. Co-delivery of local 10 µg rhBMP-2/2 µg ZA significantly augmented bone formation compared with rhBMP-2 alone (400 % BV increase, p < 0.01). Hydroxyapatite microparticle (HAp) addition (2 % w/w) to the 10 µg rhBMP-2/0.2 µg ZA group increased BV (200 %, p < 0.01). We propose that this was due to controlled ZA release of HAp-bound ZA. Consistent with this, elution analyses showed that HAp addition did not alter the rhBMP-2 elution, but delayed ZA release. Moreover, 2 % w/w HAp addition reduced the scaffold's compressive properties, but did not alter ease of surgical handling. In summary, our data show that refinement of the polymer selection and scaffold fabrication can enhance rhBMP-2 induced bone formation in our bone tissue engineering implant, and this can be further optimised by the local co-delivery of ZA/HAp.


Subject(s)
Bone Substitutes/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Bone Density/drug effects , Bone Density Conservation Agents/administration & dosage , Bone Morphogenetic Protein 2/administration & dosage , Bone Regeneration , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Bone and Bones/physiology , Compressive Strength , Diphosphonates/administration & dosage , Durapatite/administration & dosage , Female , Imidazoles/administration & dosage , Implants, Experimental , Lactic Acid/chemistry , Mice , Mice, Inbred C57BL , Polyesters , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Porosity , Radiography , Recombinant Proteins/administration & dosage , Transforming Growth Factor beta/administration & dosage , Zoledronic Acid
11.
Biomacromolecules ; 14(10): 3780-92, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-24001031

ABSTRACT

The results of a systematic investigation into the gelation behavior of α-cyclodextrin (α-CD) and Pluronic (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers) pseudopolyrotaxane (PPR) hydrogels are reported here in terms of the effects of temperature, α-CD concentration, and Pluronic type (Pluronic F68 and Pluronic F127). It was found that α-CD significantly modifies the gelation behavior of Pluronic solutions and that the PPR hydrogels are highly sensitive to changes in the α-CD concentration. In some cases, the addition of α-CD was found to be detrimental to the gelation process, leading to slower gelation kinetics and weaker gels than with Pluronic alone. However, in other cases, the hydrogels formed in the presence of the α-CDs reached higher moduli and showed faster gelation kinetics than with Pluronic alone and in some instances α-CD allowed the formation of hydrogels from Pluronic solutions that would normally not undergo gelation. Depending on composition and ratio of α-CD/Pluronic, these highly viscoelastic hydrogels displayed elastic shear modulus values ranging from 2 kPa to 7 MPa, gelation times ranging from a few seconds to a few hours and self-healing behaviors post failure. Using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), we probed the resident structure of these systems, and from these insights we have proposed a new molecular mechanism that accounts for the macroscopic properties observed.


Subject(s)
Gels/chemical synthesis , Hydrogels/chemistry , Poloxamer/chemistry , alpha-Cyclodextrins/chemistry , Gels/chemistry , Kinetics , Molecular Structure , Polyethylene Glycols/chemistry , Rheology , Temperature , Time Factors , Viscosity
12.
Biomacromolecules ; 14(2): 413-23, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23259935

ABSTRACT

As stem-cell-based therapies rapidly advance toward clinical applications, there is a need for cheap, easily manufactured, injectable gels that can be tailored to carry stem cells and impart function to such cells. Herein we describe a process for making hydrogels composed of hydroxyphenyl propionic acid (HPA) conjugated, branched poly(ethylene glycol) (PEG) via an enzyme mediated, oxidative cross-linking method. Functionalization of the branched PEG with HPA at varying degrees of substitution was confirmed via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and (1)H NMR. The versatility of this hydrogel system was exemplified through variations in the degree of HPA substitution, polymer concentration, and the concentration of cross-linking reagents (horseradish peroxidase and H(2)O(2)), which resulted in a range of mechanical properties and gelation kinetics for these gels. Cross-linking of the PEG-HPA conjugate with a recombinantly produced Fibronectin fragment (Type III domains 7-10) encouraged attachment and spreading of human mesenchymal stem cells (hMSCs) when assessed in both two-dimensional and three-dimensional formats. Interestingly, when encapsulated in both nonfunctionalized and functionalized cross-linked PEG-HPA gels, MSCs showed good viability over all time periods assessed. With tunable gelation kinetics and mechanical properties, these hydrogels provide a flexible in vitro cell culture platform that will likely have significant utility in tissue engineering as an injectable delivery platform for cells to sites of tissue damage.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/physiology , Polyethylene Glycols/chemistry , Cell Culture Techniques , Cells, Cultured , Cross-Linking Reagents/chemistry , Humans , Nuclear Magnetic Resonance, Biomolecular , Phenylpropionates/chemistry , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Tissue Engineering , Tissue Scaffolds
13.
Biomacromolecules ; 14(12): 4388-97, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24255972

ABSTRACT

With the rapidly growing interest in the use of mesenchymal stromal cells (MSCs) for cell therapy and regenerative medicine applications, either alone as an injected suspension, or dispersed within injectable hydrogel delivery systems, greater understanding of the structure-function-property characteristics of suspensions of adhesion-dependent mesenchymal cells is required. In this paper, we present the results of an experimental study into the flow behavior of concentrated suspensions of living cells of mesenchymal origin (fibroblasts) over a wide range of cell concentrations, with and without the addition of hyaluronic acid (HA), a commonly utilized biomolecule in injectable hydrogel formulations. We characterize the change in the shear viscosity as a function of shear stress and shear rate for cell volume fractions varying from 20 to 60%. We show that high volume fraction suspensions of living mesenchymal cells, known to be capable of homotypic interactions, exhibit highly complex but reproducible rheological footprints, including yield stress, shear thinning and shear-induced fracture behaviors. We show that with the addition of HA, we can significantly modify and tailor the rheology of these cell suspensions at all volume fractions. Using FACS and confocal imaging, we show that the observed effect of HA addition is due to a significantly modulation in the formation of cellular aggregates in these suspensions, and thus the resultant volume spanning network. Considering the aggregates as fractal structures, we show that by taking into account the changes in volume fractions with shear, we are able to plot a master curve for the range of conditions investigated and extract from it the average adhesion force between individual cells, across a population of millions of cells. The outcomes of this study not only provide new insight into the complexity of the flow behaviors of concentrated, adhesive mesenchymal cell suspensions, and their sensitivity to associative biomacromolecule addition, but also a novel, rapid method by which to measure the average adhesion force between individual cells, and the impacts of biomacromolecules on this important parameter.


Subject(s)
Fibroblasts/physiology , Hyaluronic Acid/chemistry , Animals , Cell Adhesion , Flow Cytometry , Humans , Mesenchymal Stem Cells/physiology , Mice , NIH 3T3 Cells , Regenerative Medicine , Shear Strength , Viscosity
14.
J Cell Physiol ; 227(9): 3234-42, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22105866

ABSTRACT

Placenta has attracted increasing attention over the past decade as a stem cell source for regenerative medicine. In particular, the amniochorionic membrane has been shown to harbor populations of mesenchymal stromal cells (MSCs). In this study, we have characterized ex vivo expanded MSCs from the human amniotic (hAMSCs) and chorionic (hCMSCs) membranes of human full-term placentas and adult bone marrow (hBMSCs). Our results show that hAMSCs, hCMSCs, and hBMSCs express typical mesenchymal (CD73, CD90, CD105, CD44, CD146, CD166) and pluripotent (Oct-4, Sox2, Nanog, Lin28, and Klf4) markers but not hematopoietic markers (CD45, CD34). Ex vivo expanded hAMSCs were found to be of fetal origin, while hCMSCs cultures contained only maternal cells. Cell proliferation was significantly higher in hCMSCs, compared to hAMSCs and hBMSCs. Integrin profiling revealed marked differences in the expression of α subunits between the three cell sources. Cadherin receptors were consistently expressed on a subset of progenitors (ranging from 1% to 60%), while N-CAM (CD56) was only expressed in hAMSCs and hCMSCs but not in hBMSCs. When induced to differentiate, hAMSCs and hCMSCs displayed strong chondrogenic and osteogenic differentiation potential but very limited capacity for adipogenic conversion. In contrast, hBMSCs showed strong differentiation potential along the three lineages. These results illustrate how MSCs from different ontological sources display differential expression of cell-fate mediators and mesodermal differentiation capacity.


Subject(s)
Amnion/metabolism , Cell Differentiation , Chorion/metabolism , Genetic Markers , Mesenchymal Stem Cells/metabolism , Placenta/metabolism , Adipogenesis/genetics , Amnion/cytology , Bone Marrow/metabolism , Cell Proliferation , Chondrogenesis/genetics , Chorion/cytology , Female , Gene Expression Regulation, Developmental , Humans , Kruppel-Like Factor 4 , Male , Mesenchymal Stem Cells/cytology , Osteogenesis/genetics , Placenta/cytology , Pregnancy
15.
Stem Cells ; 28(10): 1782-93, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20715184

ABSTRACT

Human embryonic stem cells (hESCs) and induced pluripotent stem cells have the ability to adapt to various culture conditions. Phenotypic and epigenetic changes brought about by the culture conditions can, however, have significant impacts on their use in research and in clinical applications. Here, we show that diploid hESCs start to express CD30, a biomarker for malignant cells in Hodgkin's disease and embryonal carcinoma cells, when cultured in knockout serum replacement (KOSR)-based medium, but not in fetal calf serum containing medium. We identify the commonly used medium additive, ascorbate, as the sole medium component in KOSR responsible for CD30 induction. Our data show that this epigenetic activation of CD30 expression in hESCs by ascorbate occurs through a dramatic loss of DNA methylation of a CpG island in the CD30 promoter. Analysis of the phenotype and transcriptome of hESCs that overexpress the CD30 signaling domain reveals that CD30 signaling leads to inhibition of apoptosis, enhanced single-cell growth, and transcriptome changes that are associated with cell signaling, lipid metabolism, and tissue development. Collectively, our data show that hESC culture media that contain ascorbate trigger CD30 expression through an epigenetic mechanism and that this provides a survival advantage and transcriptome changes that may help adapt hESCs to in vitro culture conditions.


Subject(s)
Ascorbic Acid/pharmacology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Epigenesis, Genetic/drug effects , Ki-1 Antigen/genetics , Cell Line , CpG Islands/genetics , Epigenesis, Genetic/genetics , Flow Cytometry , Fluorescent Antibody Technique , Humans , Karyotyping , Microsatellite Repeats/genetics , Promoter Regions, Genetic/genetics
16.
Biomacromolecules ; 12(5): 1494-503, 2011 May 09.
Article in English | MEDLINE | ID: mdl-21413682

ABSTRACT

Tissue regeneration may be stimulated by growth factors but to be effective, this delivery must be sustained and requires delivery vehicles that overcome the short half-life of these molecules in vivo. One promising approach is to couple growth factors to the biomaterial surface so that they are readily bioavailable. Here the layer-by-layer process was used to construct a multilayered polyelectrolyte delivery system on the surface of poly(lactic-co-glycolic) acid constructs. The system was first optimized on a planar surface before translation to a 3D microsphere system. The layers incorporated heparin to facilitate the loading of basic fibroblast growth factor and increase growth factor stability. Cross-linked capping layers also reduced any burst release. The model growth factor was released in a sustained manner and stimulated significantly higher cell proliferation in vitro on release compared with the addition of the growth factor heparin complex free in solution, demonstrating the promise of this approach.


Subject(s)
Intercellular Signaling Peptides and Proteins/administration & dosage , Microspheres , Tissue Engineering , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Spectroscopy, Fourier Transform Infrared , Surface Properties
17.
Biomacromolecules ; 12(11): 3856-69, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-21999900

ABSTRACT

A series of copolymers of trimethylene carbonate (TMC) and L-lactide (LLA) were synthesized and evaluated as scaffolds for the production of artificial blood vessels. The polymers were end-functionalized with acrylate, cast into films, and cross-linked using UV light. The mechanical, degradation, and biocompatibility properties were evaluated. High TMC polymers showed mechanical properties comparable to human arteries (Young's moduli of 1.2-1.8 MPa and high elasticity with repeated cycling at 10% strain). Over 84 days degradation in PBS, the modulus and material strength decreased gradually. The polymers were nontoxic and showed good cell adhesion and proliferation over 7 days using human mesenchymal stem cells. When implanted into the rat peritoneal cavity, the polymers elicited formation of tissue capsules composed of myofibroblasts, resembling immature vascular smooth muscle cells. Thus, these polymers showed properties which were tunable and favorable for vascular tissue engineering, specifically, the growth of artificial blood vessels in vivo.


Subject(s)
Absorbable Implants , Blood Vessel Prosthesis , Polyesters/chemical synthesis , Tissue Scaffolds/chemistry , Animals , Cell Adhesion , Cell Proliferation , Cells, Cultured , Elastic Modulus , Humans , Male , Mesenchymal Stem Cells/physiology , Molecular Weight , Polyesters/radiation effects , Rats , Rats, Wistar , Tensile Strength , Transition Temperature , Ultraviolet Rays
18.
Sci Rep ; 11(1): 2462, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510250

ABSTRACT

Biological computation requires in vivo control of molecular behavior to progress development of autonomous devices. miRNA switches represent excellent, easily engineerable synthetic biology tools to achieve user-defined gene regulation. Here we present the construction of a synthetic network to implement detoxification functionality. We employed a modular design strategy by engineering toxin-induced control of an enzyme scavenger. Our miRNA switch results show moderate synthetic expression control over a biologically active detoxification enzyme molecule, using an established design protocol. However, following a new design approach, we demonstrated an evolutionarily designed miRNA switch to more effectively activate enzyme activity than synthetically designed versions, allowing markedly improved extrinsic user-defined control with a toxin as inducer. Our straightforward new design approach is simple to implement and uses easily accessible web-based databases and prediction tools. The ability to exert control of toxicity demonstrates potential for modular detoxification systems that provide a pathway to new therapeutic and biocomputing applications.


Subject(s)
Enzymes/metabolism , MicroRNAs/genetics , Protein Biosynthesis/genetics , Toxins, Biological/toxicity , Base Sequence , Cytochrome P-450 CYP1A2/metabolism , Enzyme Activation/drug effects , Gene Silencing , HEK293 Cells , Humans , MicroRNAs/chemistry , MicroRNAs/metabolism , Nucleic Acid Conformation , Theophylline/pharmacology , Time Factors
19.
Biomater Sci ; 8(20): 5677-5689, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32915185

ABSTRACT

Mimicking the complex hierarchical architecture of the 'osteon', the functional unit of cortical bone, from the bottom-up offers the possibility of generating mature bone tissue in tissue engineered bone substitutes. In this work, a modular 'bottom-up' approach has been developed to assemble bone niche-mimicking nanocomposite scaffolds composed of aligned electrospun nanofibers of poly(lactic-co-glycolic acid) (PLGA) encapsulating aligned rod-shape nano-sized hydroxyapatite (nHA). By encoding axial orientation of the nHA within these aligned nanocomposite fibers, significant improvements in mechanical properties, surface roughness, hydrophilicity and in vitro simulated body fluid (SBF) mineral deposition were achieved. Moreover, these hierarchical scaffolds induced robust formation of bone hydroxyapatite and osteoblastic maturation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in growth media that was absent of any soluble osteogenic differentiation factors. The results of this investigation confirm that these tailored, aligned nanocomposite fibers, in the absence of media-bone inductive factors, offer the requisite biophysical and biochemical cues to hBMSCs to promote and support their differentiation into mature osteoblast cells and form early bone-like tissue in vitro.


Subject(s)
Durapatite , Mesenchymal Stem Cells , Biomimetics , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cues , Glycols , Humans , Lactic Acid , Osteogenesis , Polylactic Acid-Polyglycolic Acid Copolymer , Tissue Engineering , Tissue Scaffolds
20.
J Tissue Eng ; 11: 2041731420954712, 2020.
Article in English | MEDLINE | ID: mdl-33178409

ABSTRACT

Using microspherical scaffolds as building blocks to repair bone defects of specific size and shape has been proposed as a tissue engineering strategy. Here, phosphate glass (PG) microcarriers doped with 5 mol % TiO2 and either 0 mol % CoO (CoO 0%) or 2 mol % CoO (CoO 2%) were investigated for their ability to support osteogenic and vascular responses of human mesenchymal stem cells (hMSCs). Together with standard culture techniques, cell-material interactions were studied using a novel perfusion microfluidic bioreactor that enabled cell culture on microspheres, along with automated processing and screening of culture variables. While titanium doping was found to support hMSCs expansion and differentiation, as well as endothelial cell-derived vessel formation, additional doping with cobalt did not improve the functionality of the microspheres. Furthermore, the microfluidic bioreactor enabled screening of culture parameters for cell culture on microspheres that could be potentially translated to a scaled-up system for tissue-engineered bone manufacturing.

SELECTION OF CITATIONS
SEARCH DETAIL