Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
J Neurosci ; 43(24): 4390-4404, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37127364

ABSTRACT

Injury that severs peripheral nerves often results in long-lasting motor behavioral deficits and in reorganization of related spinal motor circuitry, neither of which reverse even after nerve regeneration. Stretch areflexia and gait ataxia, for example, emerge from a combination of factors including degeneration of Ia-motoneuron synapses between peripherally damaged Ia muscle spindle afferents and motoneurons. Based on evidence that nerve injury acts via immune responses to induce synapse degeneration, we hypothesized that suppressing inflammatory responses would preserve Ia-motoneuron connectivity and aid in restoring normal function. We tested our hypothesis by administering the anti-inflammatory agent minocycline in male and female rats following axotomy of a peripheral nerve. The connectivity of Ia-motoneuron synapses was then assessed both structurally and functionally at different time points. We found that minocycline treatment overcame the physical loss of Ia contacts on motoneurons which are otherwise lost after axotomy. While necessary for functional recovery, synaptic preservation was not sufficient to overcome functional decline expressed as smaller than normal stretch-evoked synaptic potentials evoked monosynaptically at Ia-motoneuron connections and an absence of the stretch reflex. These findings demonstrate a limited capacity of minocycline to rescue normal sensorimotor behavior, illustrating that structural preservation of synaptic connectivity does not ensure normal synaptic function.SIGNIFICANCE STATEMENT Here we demonstrate that acute treatment with the semisynthetic tetracycline anti-inflammatory agent minocycline permanently prevents the comprehensive loss of synaptic contacts made between sensory neurons and spinal motoneurons following peripheral nerve injury and eventual regeneration. Treatment failed, however, to rescue normal function of those synapses or the reflex circuit they mediate. These findings demonstrate that preventing synaptic disconnection alone is not sufficient to restore neural circuit operation and associated sensorimotor behaviors.


Subject(s)
Peripheral Nerve Injuries , Spinal Cord , Rats , Male , Female , Animals , Spinal Cord/physiology , Minocycline/pharmacology , Minocycline/therapeutic use , Motor Neurons/physiology , Synapses/physiology , Sensory Receptor Cells
2.
Exp Physiol ; 109(1): 35-44, 2024 01.
Article in English | MEDLINE | ID: mdl-37119460

ABSTRACT

Our objective was to evaluate an ex vivo muscle-nerve preparation used to study mechanosensory signalling by low threshold mechanosensory receptors (LTMRs). Specifically, we aimed to assess how well the ex vivo preparation represents in vivo firing behaviours of the three major LTMR subtypes of muscle primary sensory afferents, namely type Ia and II muscle spindle (MS) afferents and type Ib tendon organ afferents. Using published procedures for ex vivo study of LTMRs in mouse hindlimb muscles, we replicated earlier reports on afferent firing in response to conventional stretch paradigms applied to non-contracting, that is passive, muscle. Relative to in vivo studies, stretch-evoked firing for confirmed MS afferents in the ex vivo preparation was markedly reduced in firing rate and deficient in encoding dynamic features of muscle stretch. These deficiencies precluded conventional means of discriminating type Ia and II afferents. Muscle afferents, including confirmed Ib afferents were often indistinguishable based on their similar firing responses to the same physiologically relevant stretch paradigms. These observations raise uncertainty about conclusions drawn from earlier ex vivo studies that either attribute findings to specific afferent types or suggest an absence of treatment effects on dynamic firing. However, we found that replacing the recording solution with bicarbonate buffer resulted in afferent firing rates and profiles more like those seen in vivo. Improving representation of the distinctive sensory encoding properties in ex vivo muscle-nerve preparations will promote accuracy in assigning molecular markers and mechanisms to heterogeneous types of muscle mechanosensory neurons.


Subject(s)
Muscle Spindles , Tendons , Mice , Animals , Muscle Spindles/physiology , Signal Transduction , Neurons , Neurons, Afferent/physiology
3.
Exp Physiol ; 109(1): 55-65, 2024 01.
Article in English | MEDLINE | ID: mdl-36966478

ABSTRACT

Muscle spindles encode mechanosensory information by mechanisms that remain only partially understood. Their complexity is expressed in mounting evidence of various molecular mechanisms that play essential roles in muscle mechanics, mechanotransduction and intrinsic modulation of muscle spindle firing behaviour. Biophysical modelling provides a tractable approach to achieve more comprehensive mechanistic understanding of such complex systems that would be difficult/impossible by more traditional, reductionist means. Our objective here was to construct the first integrative biophysical model of muscle spindle firing. We leveraged current knowledge of muscle spindle neuroanatomy and in vivo electrophysiology to develop and validate a biophysical model that reproduces key in vivo muscle spindle encoding characteristics. Crucially, to our knowledge, this is the first computational model of mammalian muscle spindle that integrates the asymmetric distribution of known voltage-gated ion channels (VGCs) with neuronal architecture to generate realistic firing profiles, both of which seem likely to be of great biophysical importance. Results predict that particular features of neuronal architecture regulate specific characteristics of Ia encoding. Computational simulations also predict that the asymmetric distribution and ratios of VGCs is a complementary and, in some instances, orthogonal means to regulate Ia encoding. These results generate testable hypotheses and highlight the integral role of peripheral neuronal structure and ion channel composition and distribution in somatosensory signalling.


Subject(s)
Mechanotransduction, Cellular , Muscle Spindles , Animals , Muscle Spindles/physiology , Neurons , Ion Channels , Electrophysiological Phenomena , Mammals
4.
Exp Physiol ; 109(1): 148-158, 2024 01.
Article in English | MEDLINE | ID: mdl-37856330

ABSTRACT

Muscle spindles relay vital mechanosensory information for movement and posture, but muscle spindle feedback is coupled to skeletal motion by a compliant tendon. Little is known about the effects of tendon compliance on muscle spindle feedback during movement, and the complex firing of muscle spindles makes these effects difficult to predict. Our goal was to investigate changes in muscle spindle firing using added series elastic elements (SEEs) to mimic a more compliant tendon, and to characterize the accompanying changes in firing with respect to muscle-tendon unit (MTU) and muscle fascicle displacements (recorded via sonomicrometry). Sinusoidal, ramp-and-hold and triangular stretches were analysed to examine potential changes in muscle spindle instantaneous firing rates (IFRs) in locomotor- and perturbation-like stretches as well as serial history dependence. Added SEEs effectively reduced overall MTU stiffness and generally reduced muscle spindle firing rates, but the effect differed across stretch types. During sinusoidal stretches, peak and mean firing rates were not reduced and IFR was best-correlated with fascicle velocity. During ramp stretches, SEEs reduced the initial burst, dynamic and static responses of the spindle. Notably, IFR was negatively related to fascicle displacement during the hold phase. During triangular stretches, SEEs reduced the mean IFR during the first and second stretches, affecting the serial history dependence of mean IFR. Overall, these results demonstrate that tendon compliance may attenuate muscle spindle feedback during movement, but these changes cannot be fully explained by reduced muscle fascicle length or velocity, or MTU force.


Subject(s)
Muscle Spindles , Muscle, Skeletal , Muscle Spindles/physiology , Muscle, Skeletal/physiology , Tendons/physiology , Movement , Posture
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911753

ABSTRACT

Cancer survivors rank sensorimotor disability among the most distressing, long-term consequences of chemotherapy. Disorders in gait, balance, and skilled movements are commonly assigned to chemotoxic damage of peripheral sensory neurons without consideration of the deterministic role played by the neural circuits that translate sensory information into movement. This oversight precludes sufficient, mechanistic understanding and contributes to the absence of effective treatment for reversing chemotherapy-induced disability. We rectified this omission through the use of a combination of electrophysiology, behavior, and modeling to study the operation of a spinal sensorimotor circuit in vivo in a rat model of chronic, oxaliplatin (chemotherapy)-induced neuropathy (cOIN). Key sequential events were studied in the encoding of propriosensory information and its circuit translation into the synaptic potentials produced in motoneurons. In cOIN rats, multiple classes of propriosensory neurons expressed defective firing that reduced accurate sensory representation of muscle mechanical responses to stretch. Accuracy degraded further in the translation of propriosensory signals into synaptic potentials as a result of defective mechanisms residing inside the spinal cord. These sequential, peripheral, and central defects compounded to drive the sensorimotor circuit into a functional collapse that was consequential in predicting the significant errors in propriosensory-guided movement behaviors demonstrated here in our rat model and reported for people with cOIN. We conclude that sensorimotor disability induced by cancer treatment emerges from the joint expression of independent defects occurring in both peripheral and central elements of sensorimotor circuits.


Subject(s)
Antineoplastic Agents/adverse effects , Gait Disorders, Neurologic/chemically induced , Mechanoreceptors/drug effects , Spinal Cord/drug effects , Animals , Female , Male , Neoplasms/drug therapy , Proprioception/drug effects , Rats, Inbred F344
6.
J Neurophysiol ; 130(4): 895-909, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37671425

ABSTRACT

Oxaliplatin (OX) chemotherapy can lead to long-term sensorimotor impairments in cancer survivors. The impairments are often thought to be caused by OX-induced progressive degeneration of sensory afferents known as length-dependent dying-back sensory neuropathy. However, recent preclinical work has identified functional defects in the encoding of muscle proprioceptors and in motoneuron firing. These functional defects in the proprioceptive sensorimotor circuitry could readily impair muscle stretch reflexes, a fundamental building block of motor coordination. Given that muscle proprioceptors are distributed throughout skeletal muscle, defects in stretch reflexes could be widespread, including in the proximal region where dying-back sensory neuropathy is less prominent. All previous investigations on chemotherapy-related reflex changes focused on distal joints, leading to results that could be influenced by dying-back sensory neuropathy rather than more specific changes to sensorimotor circuitry. Our study extends this earlier work by quantifying stretch reflexes in the shoulder muscles in 16 cancer survivors and 16 healthy controls. Conduction studies of the sensory nerves in hand were completed to detect distal sensory neuropathy. We found no significant differences in the short-latency stretch reflexes (amplitude and latency) of the shoulder muscles between cancer survivors and healthy controls, contrasting with the expected differences based on the preclinical work. Our results may be linked to differences between the human and preclinical testing paradigms including, among many possibilities, differences in the tested limb or species. Determining the source of these differences will be important for developing a complete picture of how OX chemotherapy contributes to long-term sensorimotor impairments.NEW & NOTEWORTHY Our results showed that cancer survivors after oxaliplatin (OX) treatment exhibited stretch reflexes that were comparable with age-matched healthy individuals in the proximal upper limb. The lack of OX effect might be linked to differences between the clinical and preclinical testing paradigms. These findings refine our expectations derived from the preclinical study and guide future assessments of OX effects that may have been insensitive to our measurement techniques.


Subject(s)
Cancer Survivors , Neoplasms , Humans , Oxaliplatin , Upper Extremity , Muscle, Skeletal
7.
Exp Brain Res ; 240(1): 147-158, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34677632

ABSTRACT

Skeletal muscles embed multiple tendon organs, both at the proximal and distal ends of muscle fibers. One of the functions of such spatial distribution may be to provide locally unique force feedback, which may become more important when stresses are distributed non-uniformly within the muscle. Forces exerted by connections between adjacent muscles (i.e. epimuscular myofascial forces) may cause such local differences in force. The aim of this exploratory study was to investigate the effects of mechanical interactions between adjacent muscles on sensory encoding by tendon organs. Action potentials from single afferents were recorded intra-axonally in response to ramp-hold release (RHR) stretches of a passive agonistic muscle at different lengths or relative positions of its passive synergist. The tendons of gastrocnemius (GAS), plantaris (PL) and soleus (SO) muscles were cut from the skeleton for attachment to servomotors. Connective tissues among these muscles were kept intact. Lengthening GAS + PL decreased the force threshold of SO tendon organs (p = 0.035). The force threshold of lateral gastrocnemius (LG) tendon organs was not affected by SO length (p = 0.371). Also displacing LG + PL, kept at a constant muscle-tendon unit length, from a proximal to a more distal position resulted in a decrease in force threshold of LG tendon organs (p = 0.007). These results indicate that tendon organ firing is affected by changes in length and/or relative position of adjacent synergistic muscles. We conclude that tendon organs can provide the central nervous system with information about local stresses caused by epimuscular myofascial forces.


Subject(s)
Muscle, Skeletal , Tendons , Animals , Biomechanical Phenomena , Humans , Mechanoreceptors , Muscle Contraction , Rats , Rats, Wistar
8.
J Neuroeng Rehabil ; 19(1): 32, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35321749

ABSTRACT

BACKGROUND: Oxaliplatin (OX) chemotherapy for colorectal cancer is associated with adverse neurotoxic effects that can contribute to long-term sensorimotor impairments in cancer survivors. It is often thought that the sensorimotor impairments are dominated by OX-induced dying-back sensory neuropathy that primarily affects the distal regions of the limb. Recent preclinical studies have identified encoding dysfunction of muscle proprioceptors as an alternative mechanism. Unlike the dying-back sensory neuropathy affecting distal limbs, dysfunction of muscle proprioceptors could have more widespread effects. Most investigations of chemotherapy-induced sensorimotor impairments have considered only the effects of distal changes in sensory processing; none have evaluated proximal changes or their influence on function. Our study fills this gap by evaluating the functional use of proprioception in the shoulder and elbow joints of cancer survivors post OX chemotherapy. We implemented three multidirectional sensorimotor tasks: force matching, target reaching, and postural stability tasks to evaluate various aspects of proprioception and their use. Force and kinematic data of the sensorimotor tasks were collected in 13 cancer survivors treated with OX and 13 age-matched healthy controls. RESULTS: Cancer survivors exhibited less accuracy and precision than an age-matched control group when they had to rely only on proprioceptive information to match force, even for forces that required only torques about the shoulder. There were also small differences in the ability to maintain arm posture but no significant differences in reaching. The force deficits in cancer survivors were significantly correlated with self-reported motor dysfunction. CONCLUSIONS: These results suggest that cancer survivors post OX chemotherapy exhibit proximal proprioceptive deficits, and that the deficits in producing accurate and precise forces are larger than those for producing unloaded movements. Current clinical assessments of chemotherapy-related sensorimotor dysfunction are largely limited to distal symptoms. Our study suggests that we also need to consider changes in proximal function. Force matching tasks similar to those used here could provide a clinically meaningful approach to quantifying OX-related movement dysfunction during and after chemotherapy.


Subject(s)
Cancer Survivors , Neoplasms , Peripheral Nervous System Diseases , Humans , Neoplasms/drug therapy , Peripheral Nervous System Diseases/chemically induced , Proprioception/physiology , Sensation Disorders , Upper Extremity
9.
J Neuroeng Rehabil ; 18(1): 16, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33494755

ABSTRACT

Chemotherapy agents used in the standard treatments for many types of cancer are neurotoxic and can lead to lasting sensory and motor symptoms that compromise day-to-day movement functions in cancer survivors. To date, the details of movement disorders associated with chemotherapy are known largely through self-reported symptoms and functional limitations. There are few quantitative studies of specific movement deficits, limiting our understanding of dysfunction, as well as effective assessments and interventions. The aim of this narrative review is to consolidate the current understanding of sensorimotor disabilities based on quantitative measures in cancer survivors who received chemotherapy. We performed literature searches on PubMed and found 32 relevant movement studies. We categorized these studies into three themes based on the movement deficits investigated: (1) balance and postural control; (2) gait function; (3) upper limb function. This literature suggests that cancer survivors have increased postural sway, more conservative gait patterns, and suboptimal hand function compared to healthy individuals. More studies are needed that use objective measures of sensorimotor function to better characterize movement disabilities and investigate the underlying causes, as required for developing targeted assessments and interventions. By updating our understanding of movement impairments in this population, we identify significant gaps in knowledge that will help guide the direction of future research.


Subject(s)
Antineoplastic Agents/adverse effects , Movement Disorders/etiology , Neoplasms/drug therapy , Neurotoxicity Syndromes , Peripheral Nervous System Diseases/chemically induced , Humans
10.
J Exp Biol ; 222(Pt 15)2019 08 02.
Article in English | MEDLINE | ID: mdl-31324662

ABSTRACT

Stretches of relaxed cat and rat muscle elicit similar history-dependent muscle spindle Ia firing rates that resemble history-dependent forces seen in single activated muscle fibers ( Nichols and Cope, 2004). Owing to thixotropy, whole musculotendon forces and muscle spindle firing rates are history dependent during stretch of relaxed cat muscle, where both muscle force and muscle spindle firing rates are elevated in the first stretch in a series of stretch-shorten cycles ( Blum et al., 2017). By contrast, rat musculotendon exhibits only mild thixotropy, such that the measured forces when stretched cannot explain history-dependent muscle spindle firing rates in the same way ( Haftel et al., 2004). We hypothesized that history-dependent muscle spindle firing rates elicited in stretch of relaxed rat muscle mirror history-dependent muscle fiber forces, which are masked at the level of whole musculotendon force by extracellular tissue force. We removed estimated extracellular tissue force contributions from recorded musculotendon force using an exponentially elastic tissue model. We then showed that the remaining estimated muscle fiber force resembles history-dependent muscle spindle firing rates recorded simultaneously. These forces also resemble history-dependent forces recorded in stretch of single activated fibers that are attributed to muscle cross-bridge mechanisms ( Campbell and Moss, 2000). Our results suggest that history-dependent muscle spindle firing in both rats and cats arise from history-dependent forces owing to thixotropy in muscle fibers.


Subject(s)
Elastic Tissue/physiology , Muscle Fibers, Skeletal/physiology , Muscle Spindles/physiology , Muscle, Skeletal/physiology , Animals , Female , Muscle Contraction/physiology , Muscle Spindles/innervation , Muscle, Skeletal/innervation , Neurons, Afferent/physiology , Rats, Wistar
11.
J Neurophysiol ; 117(4): 1690-1701, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28123009

ABSTRACT

Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV1.1, predominantly in sensory terminals together with NaV1.6 and for NaV1.7, mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles.NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site involved in transduction or encoding of muscle stretch. We propose that NaVs contribute to multiple steps in sensory signaling by muscle spindles as it does in other types of slowly adapting sensory neurons.


Subject(s)
Action Potentials/drug effects , Muscle, Skeletal/cytology , Nerve Endings/physiology , Sensory Receptor Cells/drug effects , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Action Potentials/physiology , Afferent Pathways/drug effects , Afferent Pathways/physiology , Animals , Antibodies/pharmacology , Cats , Ganglia, Spinal/cytology , In Vitro Techniques , Mice , Mice, Knockout , Myelin Basic Protein/metabolism , Nerve Endings/drug effects , Neurofilament Proteins/metabolism , Rats , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/immunology , Voltage-Gated Sodium Channels/metabolism
12.
J Neurophysiol ; 118(5): 2687-2701, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28814636

ABSTRACT

The characteristic signaling and intraspinal projections of muscle proprioceptors best described in the cat are often generalized across mammalian species. However, species-dependent adaptations within this system seem necessary to accommodate asymmetric scaling of length, velocity, and force information required by the physics of movement. In the present study we report mechanosensory responses and intraspinal destinations of three classes of muscle proprioceptors. Proprioceptors from triceps surae muscles in adult female Wistar rats anesthetized with isoflurane were physiologically classified as muscle spindle group Ia or II or as tendon organ group Ib afferents, studied for their firing responses to passive-muscle stretch, and in some cases labeled and imaged for axon projections and varicosities in spinal segments. Afferent projections and the laminar distributions of provisional synapses in rats closely resembled those found in the cat. Afferent signaling of muscle kinematics was also similar to reports in the cat, but rat Ib afferents fired robustly during passive-muscle stretch and Ia afferents displayed an exaggerated dynamic response, even after locomotor scaling was accounted for. These differences in mechanosensory signaling by muscle proprioceptors may represent adaptations for movement control in different animal species.NEW & NOTEWORTHY Muscle sensory neurons signal information necessary for controlling limb movements. The information encoded and transmitted by muscle proprioceptors to networks in the spinal cord is known in detail only for the cat, but differences in size and behavior of other species challenge the presumed generalizability. This report presents the first findings detailing specializations in mechanosensory signaling and intraspinal targets for functionally identified subtypes of muscle proprioceptors in the rat.


Subject(s)
Mechanoreceptors/physiology , Muscle, Skeletal/physiology , Proprioception , Spinal Cord/physiology , Synapses/physiology , Animals , Female , Muscle Contraction , Muscle, Skeletal/innervation , Rats , Rats, Wistar , Spinal Cord/cytology
13.
Neurobiol Dis ; 95: 54-65, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27397106

ABSTRACT

Persistent neurotoxic side effects of oxaliplatin (OX) chemotherapy, including sensory ataxia, limit the efficacy of treatment and significantly diminish patient quality of life. The common explanation for neurotoxicity is neuropathy, however the degree of neuropathy varies greatly among patients and appears insufficient in some cases to fully account for disability. We recently identified an additional mechanism that might contribute to sensory ataxia following OX treatment. In the present study, we tested whether that mechanism, selective modification of sensory signaling by muscle proprioceptors might result in behavioral deficits in rats. OX was administered once per week for seven weeks (cumulative dose i.p. 70mg/kg) to adult female Wistar rats. Throughout and for three weeks following treatment, behavioral analysis was performed daily on OX and sham control rats. Compared to controls, OX rats demonstrated errors in placing their hind feet securely and/or correctly during a horizontal ladder rung task. These behavioral deficits occurred together with modification of proprioceptor signaling that eliminated sensory encoding of static muscle position while having little effect on encoding of dynamic changes in muscle length. Selective inability to sustain repetitive firing in response to static muscle stretch led us to hypothesize that OX treatment impairs specific ionic currents, possibly the persistent inward Na currents (NaPIC) that are known to support repetitive firing during static stimulation in several neuron types, including the class of large diameter dorsal root ganglion cells that includes muscle proprioceptors. We tested this hypothesis by determining whether the chronic effects of OX on the firing behavior of muscle proprioceptors in vivo were mimicked by acute injection of NaPIC antagonists. Both riluzole and phenytoin, each having multiple drug actions but having only antagonist action on NaPIC in common, reproduced selective modification of proprioceptor signaling observed in OX rats. Taken together, these findings lead us to propose that OX chemotherapy contributes to movement disability by modifying sensory encoding, possibly via a chronic neurotoxic effect on NaPIC in the sensory terminals of muscle proprioceptors.


Subject(s)
Ganglia, Spinal/drug effects , Organoplatinum Compounds/pharmacology , Proprioception/drug effects , Sensory Receptor Cells/drug effects , Signal Transduction/drug effects , Animals , Female , Neurotoxicity Syndromes/drug therapy , Oxaliplatin , Peripheral Nervous System Diseases/drug therapy , Proprioception/physiology , Rats, Wistar
14.
J Neurosci ; 34(10): 3475-92, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24599449

ABSTRACT

Peripheral nerve injury induces permanent alterations in spinal cord circuitries that are not reversed by regeneration. Nerve injury provokes the loss of many proprioceptive IA afferent synapses (VGLUT1-IR boutons) from motoneurons, the reduction of IA EPSPs in motoneurons, and the disappearance of stretch reflexes. After motor and sensory axons successfully reinnervate muscle, lost IA VGLUT1 synapses are not re-established and the stretch reflex does not recover; however, electrically evoked EPSPs do recover. The reasons why remaining IA synapses can evoke EPSPs on motoneurons, but fail to transmit useful stretch signals are unknown. To better understand changes in the organization of VGLUT1 IA synapses that might influence their input strength, we analyzed their distribution over the entire dendritic arbor of motoneurons before and after nerve injury. Adult rats underwent complete tibial nerve transection followed by microsurgical reattachment and 1 year later motoneurons were intracellularly recorded and filled with neurobiotin to map the distribution of VGLUT1 synapses along their dendrites. We found in control motoneurons an average of 911 VGLUT1 synapses; ~62% of them were lost after injury. In controls, VGLUT1 synapses were focused to proximal dendrites where they were grouped in tight clusters. After injury, most synaptic loses occurred in the proximal dendrites and remaining synapses were declustered, smaller, and uniformly distributed throughout the dendritic arbor. We conclude that this loss and reorganization renders IA afferent synapses incompetent for efficient motoneuron synaptic depolarization in response to natural stretch, while still capable of eliciting EPSPs when synchronously fired by electrical volleys.


Subject(s)
Motor Neurons/chemistry , Nerve Regeneration/physiology , Peripheral Nerve Injuries , Vesicular Glutamate Transport Protein 1/metabolism , Animals , Dendrites/chemistry , Dendrites/physiology , Female , Motor Neurons/physiology , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/pathology , Rats , Rats, Wistar , Spinal Cord/chemistry , Spinal Cord/physiology , Synapses/chemistry , Synapses/physiology , Tibial Nerve/chemistry , Tibial Nerve/injuries , Tibial Nerve/physiology , Vesicular Glutamate Transport Protein 1/physiology
15.
J Anat ; 227(2): 221-30, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26047324

ABSTRACT

The health of primary sensory afferents supplying muscle has to be a first consideration in assessing deficits in proprioception and related motor functions. Here we discuss the role of a particular proprioceptor, the IA muscle spindle proprioceptor in causing movement disorders in response to either regeneration of a sectioned peripheral nerve or damage from neurotoxic chemotherapy. For each condition, there is a single preferred and widely repeated explanation for disability of movements associated with proprioceptive function. We present a mix of published and preliminary findings from our laboratory, largely from in vivo electrophysiological study of treated rats to demonstrate newly discovered IA afferent defects that seem likely to make important contributions to movement disorders. First, we argue that reconnection of regenerated IA afferents with inappropriate targets, although often repeated as the reason for lost stretch-reflex contraction, is not a complete explanation. We present evidence that despite successful recovery of stretch-evoked sensory signaling, peripherally regenerated IA afferents retract synapses made with motoneurons in the spinal cord. Second, we point to evidence that movement disability suffered by human subjects months after discontinuation of oxaliplatin (OX) chemotherapy for some is not accompanied by peripheral neuropathy, which is the acknowledged primary cause of disability. Our studies of OX-treated rats suggest a novel additional explanation in showing the loss of sustained repetitive firing of IA afferents during static muscle stretch. Newly extended investigation reproduces this effect in normal rats with drugs that block Na(+) channels apparently involved in encoding static IA afferent firing. Overall, these findings highlight multiplicity in IA afferent deficits that must be taken into account in understanding proprioceptive disability, and that present new avenues and possible advantages for developing effective treatment. Extending the study of IA afferent deficits yielded the additional benefit of elucidating normal processes in IA afferent mechanosensory function.


Subject(s)
Movement Disorders/physiopathology , Muscle Spindles/physiology , Peripheral Nerve Injuries/physiopathology , Proprioception/physiology , Animals , Female , Male , Motor Neurons/physiology , Neurons, Afferent/physiology , Neuroprotective Agents/pharmacology , Peripheral Nerve Injuries/chemically induced , Proprioception/drug effects , Rats , Sensory Receptor Cells/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Spinal Cord/physiology
16.
J Neurophysiol ; 112(9): 2302-15, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25122713

ABSTRACT

Recent reports show that synaptic inhibition can modulate postsynaptic spike timing without having strong effects on firing rate. Thus synaptic inhibition can achieve multiplicity in neural circuit operation through variable modulation of postsynaptic firing rate vs. timing. We tested this possibility for recurrent inhibition (RI) of spinal motoneurons. In in vivo electrophysiological studies of adult Wistar rats anesthetized by isoflurane, we examined repetitive firing of individual lumbosacral motoneurons recorded in current clamp and modulated by synchronous antidromic electrical stimulation of multiple motor axons and their centrally projecting collateral branches. Antidromic stimulation produced recurrent inhibitory postsynaptic potentials (RIPSPs) having properties similar to those detailed in the cat. Although synchronous RI produced marked short-term modulation of motoneuron spike timing and instantaneous firing rate, there was little or no suppression of average firing rate. The bias in firing modulation of timing over average rate was observed even for high-frequency RI stimulation (100 Hz), perhaps because of the brevity of RIPSPs, which were more than twofold shorter during motoneuron firing compared with rest. These findings demonstrate that RI in the mammalian spinal cord has the capacity to support and not impede heightened motor pool activity, possibly during rapid, forceful movements.


Subject(s)
Action Potentials , Inhibitory Postsynaptic Potentials , Motor Neurons/physiology , Animals , Female , Rats , Rats, Wistar , Spinal Cord/cytology , Spinal Cord/physiology
17.
Cell Rep ; 43(2): 113776, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38367237

ABSTRACT

Microglia-mediated synaptic plasticity after CNS injury varies depending on injury severity, but the mechanisms that adjust synaptic plasticity according to injury differences are largely unknown. This study investigates differential actions of microglia on essential spinal motor synaptic circuits following different kinds of nerve injuries. Following nerve transection, microglia and C-C chemokine receptor type 2 signaling permanently remove Ia axons and synapses from the ventral horn, degrading proprioceptive feedback during motor actions and abolishing stretch reflexes. However, Ia synapses and reflexes recover after milder injuries (nerve crush). These different outcomes are related to the length of microglia activation, being longer after nerve cuts, with slower motor-axon regeneration and extended expression of colony-stimulating factor type 1 in injured motoneurons. Prolonged microglia activation induces CCL2 expression, and Ia synapses recover after ccl2 is deleted from microglia. Thus, microglia Ia synapse removal requires the induction of specific microglia phenotypes modulated by nerve regeneration efficiencies. However, synapse preservation was not sufficient to restore the stretch-reflex function.


Subject(s)
Axons , Microglia , Nerve Regeneration , Receptors, Chemokine , Signal Transduction
18.
J Physiol ; 591(4): 875-97, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23129791

ABSTRACT

Small-conductance calcium-activated potassium (SK) channels mediate medium after-hyperpolarization (AHP) conductances in neurons throughout the central nervous system. However, the expression profile and subcellular localization of different SK channel isoforms in lumbar spinal α-motoneurons (α-MNs) is unknown. Using immunohistochemical labelling of rat, mouse and cat spinal cord, we reveal a differential and overlapping expression of SK2 and SK3 isoforms across specific types of α-MNs. In rodents, SK2 is expressed in all α-MNs, whereas SK3 is expressed preferentially in small-diameter α-MNs; in cats, SK3 is expressed in all α-MNs. Function-specific expression of SK3 was explored using post hoc immunostaining of electrophysiologically characterized rat α-MNs in vivo. These studies revealed strong relationships between SK3 expression and medium AHP properties. Motoneurons with SK3-immunoreactivity exhibit significantly longer AHP half-decay times (24.67 vs. 11.02 ms) and greater AHP amplitudes (3.27 vs. 1.56 mV) than MNs lacking SK3-immunoreactivity. We conclude that the differential expression of SK isoforms in rat and mouse spinal cord may contribute to the range of medium AHP durations across specific MN functional types and may be a molecular factor distinguishing between slow- and fast-type α-MNs in rodents. Furthermore, our results show that SK2- and SK3-immunoreactivity is enriched in distinct postsynaptic domains that contain Kv2.1 channel clusters associated with cholinergic C-boutons on the soma and proximal dendrites of α-MNs. We suggest that this remarkably specific subcellular membrane localization of SK channels is likely to represent the basis for a cholinergic mechanism for effective regulation of channel function and cell excitability.


Subject(s)
Motor Neurons/physiology , Small-Conductance Calcium-Activated Potassium Channels/physiology , Spinal Cord/physiology , Synapses/physiology , Animals , Cats , Female , In Vitro Techniques , Lumbosacral Region , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Rats , Rats, Sprague-Dawley , Rats, Wistar
19.
bioRxiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37215007

ABSTRACT

Muscle spindles relay vital mechanosensory information for movement and posture, but muscle spindle feedback is coupled to skeletal motion by a compliant tendon. Little is known about the effects of tendon compliance on muscle spindle feedback during movement, and the complex firing of muscle spindles make these effects difficult to predict. Our goal was to investigate changes in muscle spindle firing using added series elastic elements (SEEs) to mimic a more compliant tendon, and to characterize the accompanying changes in firing with respect to muscle-tendon unit (MTU) and muscle fascicle displacements (recorded via sonomicrometry). Sinusoidal, ramp-hold-release, and triangular stretches were analyzed to examine potential changes in muscle spindle instantaneous firing rates (IFRs) in locomotor- and perturbation-like stretches as well as history dependence. Added SEEs effectively reduced overall MTU stiffness and generally reduced muscle spindle firing rates, but the effect differed across stretch types. During sinusoidal stretches, peak firing rates were reduced and IFR was strongly correlated with fascicle velocity. During ramp stretches, SEEs reduced the dynamic and static responses of the spindle during lengthening but had no effect on initial bursts at the onset of stretch. Notably, IFR was negatively related to fascicle displacement during the hold phase. During triangular stretches, SEEs reduced the mean IFR during the first and second stretches, affecting the history dependence of mean IFR. Overall, these results demonstrate that tendon compliance may attenuate muscle spindle feedback during movement, but these changes cannot be fully explained by reduced muscle fascicle length and velocity.

20.
J Neurophysiol ; 108(5): 1253-61, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22673334

ABSTRACT

Intact cats and humans respond to support surface perturbations with broadly tuned, directionally sensitive muscle activation. These muscle responses are further sensitive to initial stance widths (distance between feet) and perturbation velocity. The sensory origins driving these responses are not known, and conflicting hypotheses are prevalent in the literature. We hypothesize that the direction-, stance-width-, and velocity-sensitive muscle response during support surface perturbations is driven largely by rapid autogenic proprioceptive pathways. The primary objective of this study was to obtain direct evidence for our hypothesis by establishing that muscle spindle receptors in the intact limb can provide appropriate information to drive the muscle response to whole body postural perturbations. Our second objective was to determine if spindle recordings from the intact limb generate the heightened sensitivity to small perturbations that has been reported in isolated muscle experiments. Maintenance of this heightened sensitivity would indicate that muscle spindles are highly proficient at detecting even small disturbances, suggesting they can provide efficient feedback about changing postural conditions. We performed intraaxonal recordings from muscle spindles in anesthetized cats during horizontal, hindlimb perturbations. We indeed found that muscle spindle afferents in the intact limb generate broadly tuned but directionally sensitive activation patterns. These afferents were also sensitive to initial stance widths and perturbation velocities. Finally, we found that afferents in the intact limb have heightened sensitivity to small perturbations. We conclude that muscle spindle afferents provide an array of important information about biomechanics and perturbation characteristics highlighting their potential importance in generating appropriate muscular response during a postural disturbance.


Subject(s)
Anesthesia , Feedback, Physiological/physiology , Muscle Spindles/physiology , Postural Balance/physiology , Posture/physiology , Action Potentials/drug effects , Action Potentials/physiology , Analgesics/pharmacology , Animals , Biomechanical Phenomena , Cats , Electromyography , Extremities/innervation , Extremities/physiology , Feedback, Physiological/drug effects , Female , Hindlimb/drug effects , Hindlimb/physiology , Ketamine/pharmacology , Muscle Spindles/drug effects , Orientation , Postural Balance/drug effects , Reaction Time/physiology , Xylazine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL