Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Environ Manage ; 352: 119897, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38184869

ABSTRACT

Thousands of artificial ('human-made') structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision-makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level.


Subject(s)
Ecosystem , Oil and Gas Fields , Humans , Consensus , Environment , Climate
2.
J Environ Manage ; 350: 119644, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38000275

ABSTRACT

Switching from fossil fuels to renewable energy is key to international energy transition efforts and the move toward net zero. For many nations, this requires decommissioning of hundreds of oil and gas infrastructure in the marine environment. Current international, regional and national legislation largely dictates that structures must be completely removed at end-of-life although, increasingly, alternative decommissioning options are being promoted and implemented. Yet, a paucity of real-world case studies describing the impacts of decommissioning on the environment make decision-making with respect to which option(s) might be optimal for meeting international and regional strategic environmental targets challenging. To address this gap, we draw together international expertise and judgment from marine environmental scientists on marine artificial structures as an alternative source of evidence that explores how different decommissioning options might ameliorate pressures that drive environmental status toward (or away) from environmental objectives. Synthesis reveals that for 37 United Nations and Oslo-Paris Commissions (OSPAR) global and regional environmental targets, experts consider repurposing or abandoning individual structures, or abandoning multiple structures across a region, as the options that would most strongly contribute toward targets. This collective view suggests complete removal may not be best for the environment or society. However, different decommissioning options act in different ways and make variable contributions toward environmental targets, such that policy makers and managers would likely need to prioritise some targets over others considering political, social, economic, and ecological contexts. Current policy may not result in optimal outcomes for the environment or society.


Subject(s)
Environmental Monitoring , Oil and Gas Fields , Renewable Energy , Fossil Fuels
3.
Sci Total Environ ; 917: 170390, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286287

ABSTRACT

For marine wave and tidal energy to successfully contribute to global renewable energy goals and climate change mitigation, marine energy projects need to expand beyond small deployments to large-scale arrays. However, with large-scale projects come potential environmental effects not observed at the scales of single devices and small arrays. One of these effects is the risk of displacing marine animals from their preferred habitats or their migration routes, which may increase with the size of arrays and location. Many marine animals may be susceptible to some level of displacement once large marine energy arrays are increasingly integrated into the seascape, including large migratory animals, non-migratory pelagic animals with large home ranges, and benthic and demersal mobile organisms with more limited ranges, among many others. Yet, research around the mechanisms and effects of displacement have been hindered by the lack of clarity within the international marine energy community regarding the definition of displacement, how it occurs, its consequences, species of concern, and methods to investigate the outcomes. This review paper leveraged lessons learned from other industries, such as offshore development, to establish a definition of displacement in the marine energy context, explore which functional groups of marine animals may be affected and in what way, and identify pathways for investigating displacement through modeling and monitoring. In the marine energy context, we defined displacement as the outcome of one of three mechanisms (i.e., attraction, avoidance, and exclusion) triggered by an animal's response to one or more stressors acting as a disturbance, with various consequences at the individual through population levels. The knowledge gaps highlighted in this study will help the regulatory and scientific communities prepare for mitigating, observing, measuring, and characterizing displacement of various animals around marine energy arrays in order to prevent irreversible consequences.


Subject(s)
Ecosystem , Renewable Energy , Animals , Climate
4.
Sci Total Environ ; 904: 166801, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37669708

ABSTRACT

Global expansion of marine renewable energy (MRE) technologies is needed to help address the impacts of climate change, to ensure a sustainable transition from carbon-based energy sources, and to meet national energy security needs using locally-generated electricity. However, the MRE sector has yet to realize its full potential due to the limited scale of device deployments (i.e., single devices or small demonstration-scale arrays), and is hampered by various factors including uncertainty about environmental effects and how the magnitude of these effects scale with an increasing number of devices. This paper seeks to expand our understanding of the environmental effects of MRE arrays using existing frameworks and through the adaptation and application of cumulative environmental effects terminology to key stressor-receptor interactions. This approach facilitates the development of generalized concepts for the scaling of environmental effects for key stressor-receptor interactions, identifying high priority risks and revealing knowledge gaps that require investigation to aid expansion of the MRE sector. Results suggest that effects of collision risk for an array may be additive, antagonistic, or synergistic, but are likely dependent on array location and configuration. Effects of underwater noise are likely additive as additional devices are deployed in an array, while the effects of electromagnetic fields may be dominant, additive, or antagonistic. Changes to benthic habitats are likely additive, but may be dependent on array configuration and could be antagonistic or synergistic at the ecosystem scale. Effects of displacement, entanglement, and changes to oceanographic systems for arrays are less certain because little information is available about effects at the current scale of MRE development.

5.
Mar Pollut Bull ; 136: 92-106, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30509846

ABSTRACT

There is global interest in marine renewable energy from underwater tidal turbines. Due to overlap in animal habitat with locations for tidal turbines, the potential for collisions has led to concern around strike risk. Using data from tagged harbor seals collected before construction and after operation of the SeaGen tidal turbine in Northern Ireland, this study quantifies risks of an operational turbine to harbor seals by taking into account turbine characteristics, tidal state, and seal behavior. We found 68% spatial avoidance (95% C.I., 37%, 83%) by harbor seals within 200 m of the turbine. When additionally accounting for variation in seal occupancy over depth and tidal flows, there is an overall reduction in collision risk from 1.29 to 0.125 seals per tidal cycle (90.3% reduction; (95% C.I., 83%, 98%)) compared to risk calculated under assumptions of uniform habitat use. This demonstrates the need to incorporate environmental conditions to properly assess strike risk.


Subject(s)
Behavior, Animal/physiology , Caniformia/physiology , Environmental Monitoring/methods , Renewable Energy , Animals , Caniformia/growth & development , Ecosystem , Northern Ireland , Oceans and Seas , Population Density , Risk
SELECTION OF CITATIONS
SEARCH DETAIL