Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Front Immunol ; 12: 616215, 2021.
Article in English | MEDLINE | ID: mdl-34447366

ABSTRACT

Tolerogenic vaccinations using beta-cell antigens are attractive for type 1 diabetes prevention, but clinical trials have been disappointing. This is probably due to the late timing of intervention, when multiple auto-antibodies are already present. We therefore devised a strategy to introduce the initiating antigen preproinsulin (PPI) during neonatal life, when autoimmunity is still silent and central tolerance mechanisms, which remain therapeutically unexploited, are more active. This strategy employs an oral administration of PPI-Fc, i.e. PPI fused with an IgG Fc to bind the intestinal neonatal Fc receptor (FcRn) that physiologically delivers maternal antibodies to the offspring during breastfeeding. Neonatal oral PPI-Fc vaccination did not prevent diabetes development in PPI T-cell receptor-transgenic G9C8.NOD mice. However, PPI-Fc was efficiently transferred through the intestinal epithelium in an Fc- and FcRn-dependent manner, was taken up by antigen presenting cells, and reached the spleen and thymus. Although not statistically significant, neonatal oral PPI-Fc vaccination delayed diabetes onset in polyclonal Ins2-/-.NOD mice that spontaneously develop accelerated diabetes. Thus, this strategy shows promise in terms of systemic and thymic antigen delivery via the intestinal FcRn pathway, but the current PPI-Fc formulation/regimen requires further improvements to achieve diabetes prevention.


Subject(s)
Diabetes Mellitus, Experimental/prevention & control , Diabetes Mellitus, Type 1/prevention & control , Histocompatibility Antigens Class I/immunology , Insulin/pharmacology , Protein Precursors/pharmacology , Receptors, Fc/immunology , Recombinant Fusion Proteins/pharmacology , Thymus Gland/immunology , Administration, Oral , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Histocompatibility Antigens Class I/genetics , Insulin/genetics , Mice , Mice, Inbred NOD , Mice, Knockout , Protein Precursors/genetics , Receptors, Fc/genetics , Recombinant Fusion Proteins/genetics
2.
Cell Metab ; 28(6): 946-960.e6, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30078552

ABSTRACT

Although CD8+ T-cell-mediated autoimmune ß cell destruction occurs in type 1 diabetes (T1D), the target epitopes processed and presented by ß cells are unknown. To identify them, we combined peptidomics and transcriptomics strategies. Inflammatory cytokines increased peptide presentation in vitro, paralleling upregulation of human leukocyte antigen (HLA) class I expression. Peptide sources featured several insulin granule proteins and all known ß cell antigens, barring islet-specific glucose-6-phosphatase catalytic subunit-related protein. Preproinsulin yielded HLA-A2-restricted epitopes previously described. Secretogranin V and its mRNA splice isoform SCG5-009, proconvertase-2, urocortin-3, the insulin gene enhancer protein ISL-1, and an islet amyloid polypeptide transpeptidation product emerged as antigens processed into HLA-A2-restricted epitopes, which, as those already described, were recognized by circulating naive CD8+ T cells in T1D and healthy donors and by pancreas-infiltrating cells in T1D donors. This peptidome opens new avenues to understand antigen processing by ß cells and for the development of T cell biomarkers and tolerogenic vaccination strategies.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Epitopes, T-Lymphocyte/immunology , Transcriptome/immunology , Animals , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Case-Control Studies , Cell Line , Corticotropin-Releasing Hormone/metabolism , Cytokines/metabolism , HLA Antigens/metabolism , Humans , Insulin/metabolism , Islet Amyloid Polypeptide/metabolism , Mice , Neuroendocrine Secretory Protein 7B2/metabolism , Proprotein Convertase 2/metabolism , Protein Precursors/metabolism , Proteomics/methods , Urocortins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL