ABSTRACT
Under perturbing conditions such as infection with Leishmania, a protozoan parasite living within the phagosomes in mammalian macrophages, cellular and organellar structures, and metabolism are dynamically regulated for neutralizing the pressure of parasitism. However, how modulations of the host cell metabolic pathways support Leishmania infection remains unknown. Herein, we report that lipid accumulation heightens the susceptibility of mice to L. donovani infection and promotes resistance to first-line anti-leishmanial drugs. Despite being pro-inflammatory, the in vitro generated uninfected lipid-laden macrophages (LLMs) or adipose-tissue macrophages (ATMs) display lower levels of reactive oxygen and nitrogen species. Upon infection, LLMs secrete higher IL-10 and lower IL-12p70 cytokines, inhibiting CD4+ T cell activation and Th1 response suggesting a key modulatory role for intramacrophage lipid accumulation in anti-leishmanial host defence. We, therefore, examined this causal relationship between lipids and immunomodulation using an in vivo high-fat diet (HFD) mouse model. HFD increased the susceptibility to L. donovani infection accompanied by a defective CD4+ Th1 and CD8+ T cell response. The white adipose tissue of HFD mice displays increased susceptibility to L. donovani infection with the preferential infection of F4/80+ CD11b+ CD11c+ macrophages with higher levels of neutral lipids reserve. The HFD increased resistance to a first-line anti-leishmanial drug associated with a defective adaptive immune response. These data demonstrate that the accumulation of neutral lipids contributes to susceptibility to visceral leishmaniasis hindering host-protective immune response and reducing the efficacy of antiparasitic drug therapies.
Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Animals , Mice , Leishmaniasis, Visceral/drug therapy , Adaptive Immunity , CD8-Positive T-Lymphocytes , Lipids , Mice, Inbred BALB C , MammalsABSTRACT
A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 µM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.
Subject(s)
Antiprotozoal Agents , Chagas Disease , Trypanosoma cruzi , Humans , Antiparasitic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Phospholipid Ethers/therapeutic use , Chagas Disease/drug therapy , Choline/therapeutic useABSTRACT
Natural products are a very rich source for obtaining new compounds with therapeutic potential. In the search for new antiparasitic and antimicrobial agents, molecular hybrids were designed based on the structures of antimicrobial marine quinazolinones and eugenol, a natural phenolic compound. Following reports of the therapeutic potential of quinazolinones and eugenol derivatives, it was expected that the union of these pharmacophores could generate biologically relevant substances. The designed compounds were obtained by classical synthetic procedures and were characterized by routine spectrometric techniques. Nine intermediates and final products were then evaluated in vitro against Trypanosoma brucei and Leishmania infantum. Antifungal and antibacterial activity were also evaluated. Six compounds (9b, 9c, 9d, 10b, 10c, and 14) showed mild activity against T. brucei with IC50 in the range of 11.17-31.68 µM. Additionally, intermediate 9c showed anti-Leishmania activity (IC50 7.54 µM) and was six times less cytotoxic against THP-1 cells. In conclusion, novel derivatives with a simple quinazolinone scaffold showing selectivity against parasites without antibacterial and antifungal activities were disclosed, paving the way for new antitrypanosomal agents.
Subject(s)
Anti-Infective Agents , Antiprotozoal Agents , Leishmania infantum , Trypanosoma brucei brucei , Antifungal Agents/pharmacology , Eugenol , Antiprotozoal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Quinazolinones/chemistry , Structure-Activity RelationshipABSTRACT
Dogs are highly valued companions and work animals that are susceptible to many life-threatening conditions such as canine leishmaniosis (CanL). Plasma-derived extracellular vesicles (EVs), exploited extensively in biomarker discovery, constitute a mostly untapped resource in veterinary sciences. Thus, the definition of proteins associated with plasma EVs recovered from healthy and diseased dogs with a relevant pathogen would be important for biomarker development. For this, we recovered, using size-exclusion chromatography (SEC), EVs from 19 healthy and 20 CanL dogs' plasma and performed proteomic analysis by LC-MS/MS to define their core proteomic composition and search for CanL-associated alterations. EVs-specific markers were identified in all preparations and also non-EVs proteins. Some EVs markers such as CD82 were specific to the healthy animals, while others, such as the Integrin beta 3 were identified in most samples. The EVs-enriched preparations allowed the identification of 529 canine proteins that were identified in both groups, while 465 and 154 were only identified in healthy or CanL samples, respectively. A GO enrichment analysis revealed few CanL-specific terms. Leishmania spp. protein identifications were also found, although with only one unique peptide. Ultimately, CanL-associated proteins of interest were identified and a core proteome was revealed that will be available for intra- and inter-species comparisons.
Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Leishmaniasis , Dogs , Animals , Leishmaniasis, Visceral/veterinary , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry , Leishmaniasis/veterinary , BiomarkersABSTRACT
Leishmaniases are neglected tropical diseases. The treatment of leishmaniasis relies exclusively on chemotherapy including amphotericin B (AmB), miltefosine (hexadecylphosphocholine), and pentamidine. Besides the fact that these molecules are harmful for patients, little is known about the impact of such antileishmanial drugs on primary human cells in relation to immune function. The present study demonstrates that all antileishmanial drugs inhibit CD4 and CD8 T cell proliferation at the doses that are not related to increased cell death. Our results highlight that antileishmanial drugs have an impact on monocytes by altering the expression of IL-12 induced by LPS, whereas only AmB induced IL-10 secretion; both cytokines are essential in regulating Th1 cell-mediated immunity. Interestingly, IL-12 and anti-IL-10 Abs improved T cell proliferation inhibited by AmB. Furthermore, our results show that in contrast to hexadecylphosphocholine and pentamidine, AmB induced gene expression of the inflammasome pathway. Thus, AmB induced IL-1ß and IL-18 secretions, which are reduced by specific inhibitors of caspase activation (Q-VD) and NLRP3 activation (MCC950). Our results reveal previously underestimated effects of antileishmanial drugs on primary human cells.
Subject(s)
Antiparasitic Agents/pharmacology , Inflammasomes/drug effects , Interleukin-12/metabolism , Leishmania/genetics , Leishmaniasis/drug therapy , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/metabolism , Humans , Inflammasomes/metabolism , Interleukin-10/metabolism , Leishmania/metabolism , Leishmaniasis/metabolism , Monocytes/drug effects , Monocytes/metabolism , Signal Transduction/drug effectsABSTRACT
Neglected tropical diseases caused by kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp.) place a significant health and economic burden on developing nations worldwide. Current therapies are largely outdated, inadequate, and face mounting drug resistance from the causative parasites. Thus, there is an urgent need for drug discovery and development. Target-led drug discovery approaches have focused on the identification of parasite enzymes catalyzing essential biochemical processes, which significantly differ from equivalent proteins found in humans, thereby providing potentially exploitable therapeutic windows. One such target is ribose 5-phosphate isomerase B (RpiB), an enzyme involved in the nonoxidative branch of the pentose phosphate pathway, which catalyzes the interconversion of d-ribose 5-phosphate and d-ribulose 5-phosphate. Although protozoan RpiB has been the focus of numerous targeted studies, compounds capable of selectively inhibiting this parasite enzyme have not been identified. Here, we present the results of a fragment library screening against Leishmania infantum RpiB (LiRpiB), performed using thermal shift analysis. Hit fragments were shown to be effective inhibitors of LiRpiB in activity assays, and several fragments were capable of selectively inhibiting parasite growth in vitro. These results support the identification of LiRpiB as a validated therapeutic target. The X-ray crystal structure of apo LiRpiB was also solved, permitting docking studies to assess how hit fragments might interact with LiRpiB to inhibit its activity. Overall, this work will guide structure-based development of LiRpiB inhibitors as antileishmanial agents.
Subject(s)
Leishmania infantum , Pharmaceutical Preparations , Amino Acid Sequence , Humans , RibosemonophosphatesABSTRACT
Trypanosomiasis is a parasitic disease affecting both humans and animals in the form of Human African Trypanosomiasis and Nagana disease, respectively. Anemia is one of the most common symptoms of trypanosomiasis, and if left unchecked can cause severe complications and even death. Several factors have been associated with the development of this anemia, including dysregulation of iron homeostasis, but little is known about the molecular mechanisms involved. Here, using murine models, we study the involvement of hepcidin, the key regulator of iron metabolism and an important player in the development of anemia of inflammation. Our data show two stages for the progression of anemia, to which hepcidin contributes a first stage when anemia develops, with a likely cytokine-mediated stimulation of hepcidin and subsequent limitation in iron availability and erythropoiesis, and a second stage of recovery, where the increase in hepcidin then declines due to the reduced inflammatory signal and increased production of erythroid regulators by the kidney, spleen and bone marrow, thus leading to an increase in iron release and availability, and enhanced erythropoiesis. In agreement with this, in hepcidin knockout mice, anemia is much milder and its recovery is complete, in contrast to wild-type animals which have not fully recovered from anemia after 21 days. Besides all other factors known to be involved in the development of anemia during trypanosomiasis, hepcidin clearly makes an important contribution to both its development and recovery.
Subject(s)
Anemia , Trypanosoma brucei brucei , Anemia/etiology , Animals , Erythropoiesis , Hepcidins/genetics , Iron , MiceABSTRACT
A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure-activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 µM. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases.
Subject(s)
Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/pharmacology , Chagas Disease/drug therapy , Drug Design , Leishmaniasis/drug therapy , Macrophages/drug effects , Phospholipids/pharmacology , Chagas Disease/parasitology , Click Chemistry , Humans , Leishmania/drug effects , Leishmaniasis/parasitology , Structure-Activity Relationship , Trypanosoma cruzi/drug effectsABSTRACT
Lutzomyia longipalpis sand flies are the major natural vector of Leishmania infantum parasites, responsible for transmission of visceral leishmaniasis in the New World. Several experimental studies have demonstrated the ability of Lu. longipalpis to sustain development of different Leishmania species. However, no study had explored in depth the potential vector competence of Lu. longipalpis for Leishmania species other than L. infantum. Here, we show that Lu. longipalpis is a competent vector of L. major parasites, being able to acquire parasites from active cutaneous leishmaniasis lesions, sustain mature infections, and transmit them to naive hosts, causing disease.
Subject(s)
Insect Vectors/parasitology , Leishmania major/physiology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/transmission , Psychodidae/parasitology , Animals , Female , Mice , Mice, Inbred BALB C , Species SpecificityABSTRACT
Immunosuppression is a well-established risk factor for Visceral Leishmaniasis. Post-immunosuppression leishmaniasis is characterized by an increase of parasite burden, hematopoietic disorders and unusual clinical manifestations. Although there are many reports on bone marrow findings in VL, less is known about the relationship between parasite dynamics in this organ and the function of either hematopoietic stem cells and progenitor cells themselves. In the present study, we tackle these issues using a new approach of infecting human stem cells derived from bone marrow with L. infantum. Using this strategy, we show that human hematopoietic stem cells (hHSC) are able to phagocytize L. infantum promastigotes and release modulatory and pro-inflammatory cytokines, mainly TNF-α. Our results demonstrated that L. infantum infection in vitro enhances hematopoiesis, favoring the development of erythrocitic lineage through a mechanism yet unknown. Moreover, we found that L. infantum infection alters the phenotypic profile of the hematopoietic progeny; modifying the surface markers expression of differentiated cells. Thus, our study represents a rare opportunity to monitor the in vitro differentiation of human stem cells experimentally infected by L. infantum to better understand the consequences of the infection on phenotypic and functional profile of the cell progeny.
Subject(s)
Cell Differentiation/immunology , Erythropoiesis/immunology , Hematopoietic Stem Cells/immunology , Leishmania infantum/immunology , Phagocytosis/immunology , Adult , Aged , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Bone Marrow Cells/parasitology , Cytokines/immunology , Cytokines/metabolism , Female , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/parasitology , Host-Parasite Interactions/immunology , Humans , Leishmania infantum/physiology , Male , Middle Aged , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Hematogenous dissemination followed by tissue tropism is a characteristic of the infectious process of many pathogens including those transmitted by blood-feeding vectors. After entering into the blood circulation, these pathogens must arrest in the target organ before they infect a specific tissue. Here, we describe a non-invasive method to visualize and quantify the homing of pathogens to the host tissues. By using in vivo bioluminescence imaging we quantify the accumulation of luciferase-expressing parasites in the host organs during the first minutes following their intravascular inoculation in mice. Using this technique we show that in the malarial infection, once in the blood circulation, most of bioluminescent Plasmodium berghei sporozoites, the parasite stage transmitted to the host skin by a mosquito bite, rapidly home to the liver where they invade and develop inside hepatocytes. This homing is specific to this developmental stage since blood stage parasites do not accumulate in the liver, as well as extracellular Trypanosoma brucei bloodstream forms and liver-infecting Leishmania infantum amastigotes. Finally, this method can be used to study the dynamics of tissue tropism of parasites, dissect the molecular and cellular basis of their increased arrest in organs and to evaluate immune interventions designed to block this targeted interaction.
Subject(s)
Host-Pathogen Interactions , Leishmania/physiology , Luminescent Measurements/methods , Plasmodium berghei/physiology , Trypanosoma/physiology , Animals , Blood/diagnostic imaging , Blood/parasitology , Liver/diagnostic imaging , Liver/parasitology , Luciferases , Mice , Sporozoites/physiology , TropismABSTRACT
Metabolic manipulation of host cells by intracellular pathogens is currently recognized to play an important role in the pathology of infection. Nevertheless, little information is available regarding mitochondrial energy metabolism in Leishmania infected macrophages. Here, we demonstrate that during L. infantum infection, macrophages switch from an early glycolytic metabolism to an oxidative phosphorylation, and this metabolic deviation requires SIRT1 and LKB1/AMPK. SIRT1 or LBK1 deficient macrophages infected with L. infantum failed to activate AMPK and up-regulate its targets such as Slc2a4 and Ppargc1a, which are essential for parasite growth. As a result, impairment of metabolic switch caused by SIRT1 or AMPK deficiency reduces parasite load in vitro and in vivo. Overall, our work demonstrates the importance of SIRT1 and AMPK energetic sensors for parasite intracellular survival and proliferation, highlighting the modulation of these proteins as potential therapeutic targets for the treatment of leishmaniasis.
Subject(s)
AMP-Activated Protein Kinases/immunology , Immune Evasion , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Macrophages , Mitochondria/immunology , Sirtuin 1/immunology , AMP-Activated Protein Kinases/genetics , Animals , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/immunology , Leishmaniasis, Visceral/genetics , Macrophages/immunology , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Mice, Knockout , Oxidative Phosphorylation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Sirtuin 1/genetics , Transcription Factors/genetics , Transcription Factors/immunologyABSTRACT
Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues (1-3) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic enzymes (Trypanosoma brucei PTR1-TbPTR1 and Leishmania major-LmPTR1) and parasites (Trypanosoma brucei and Leishmania infantum). A crystal structure of TbPTR1 in complex with compound 1 and the first crystal structures of LmPTR1-flavanone complexes (compounds 1 and 3) were solved. The inhibitory activity of the chroman-4-one and chromen-4-one derivatives was explained by comparison of observed and predicted binding modes of the compounds. Compound 1 showed activity both against the targeted enzymes and the parasites with a selectivity index greater than 7 and a low toxicity. Our results provide a basis for further scaffold optimization and structure-based drug design aimed at the identification of potent anti-trypanosomatidic compounds targeting multiple PTR1 variants.
Subject(s)
Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Chromans/chemistry , Chromans/pharmacology , Oxidoreductases/antagonists & inhibitors , Antiparasitic Agents/chemical synthesis , Binding Sites , Chromans/chemical synthesis , Enzyme Activation/drug effects , Inhibitory Concentration 50 , Leishmania major/drug effects , Leishmania major/enzymology , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Oxidoreductases/chemistry , Protein Binding , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/enzymologyABSTRACT
Poly-N-acetylglucosamine (PNAG) is a major component of the Staphylococcus epidermidis biofilm extracellular matrix. However, it is not yet clear how this polysaccharide impacts the host immune response and infection-associated pathology. Faster neutrophil recruitment and bacterial clearance were observed in mice challenged intraperitoneally with S. epidermidis biofilm cells of the PNAG-producing 9142 strain than in mice similarly challenged with the isogenic PNAG-defective M10 mutant. Moreover, intraperitoneal priming with 9142 cells exacerbated liver inflammatory pathology induced by a subsequent intravenous S. epidermidis challenge, compared to priming with M10 cells. The 9142-primed mice had elevated splenic CD4(+) T cells producing gamma interferon and interleukin-17A, indicating that PNAG promoted cell-mediated immunity. Curiously, despite having more marked liver tissue pathology, 9142-primed mice also had splenic T regulatory cells with greater suppressive activity than those of their M10-primed counterparts. By showing that PNAG production by S. epidermidis biofilm cells exacerbates host inflammatory pathology, these results together suggest that this polysaccharide contributes to the clinical features associated with biofilm-derived infections.
Subject(s)
Acetylglucosamine/metabolism , Epidermis/metabolism , Immunity, Cellular/physiology , Staphylococcal Infections/physiopathology , Staphylococcus epidermidis/physiology , Analysis of Variance , Animals , Biofilms , CD4-Positive T-Lymphocytes/physiology , Cytokines/analysis , Flow Cytometry , Interferon-gamma/metabolism , Interleukin-17/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Spleen/cytologyABSTRACT
Current treatments for African trypanosomiasis are either toxic, costly, difficult to administer, or prone to elicit resistance. This study evaluated the activity of bisnaphthalimidopropyl (BNIP) derivatives againstTrypanosoma brucei BNIPDiaminobutane (BNIPDabut), the most active of these compounds, showedin vitroinhibition in the single-unit nanomolar range, similar to the activity in the reference drug pentamidine, and presented low toxicity and adequate metabolic stability. Additionally, using a murine model of acute infection and live imaging, a significant decrease in parasite load in BNIPDabut-treated mice was observed. However, cure was not achieved. BNIPDabut constitutes a new scaffold for antitrypanosomal drugs that deserves further consideration.
Subject(s)
Naphthalimides/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Animals , Cell Line , Drug Stability , Female , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Liver/drug effects , Liver/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Naphthalimides/chemical synthesis , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Parasite Load , Pentamidine/pharmacology , Primary Cell Culture , Structure-Activity Relationship , Survival Analysis , Trypanocidal Agents/chemical synthesis , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/mortality , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/pathologyABSTRACT
Leishmania infantum causes a chronic infectious disease named visceral leishmaniasis (VL). We employed a non-human primate model to monitor immune parameters over time and gain new insights into the disease. Rhesus macaques were infected with L. infantum and the T helper and B cell immunological profiles characterized during acute and chronic phases of infection. Parasite detection in visceral compartments during the acute phase was associated with differentiation of effector memory CD4 T cells and increased levels of Th1 transcripts. At the chronic phase, parasites colonized novel lymphoid niches concomitant with increased expression of IL10. Despite the occurrence of hypergammaglobulinemia, the production of parasite-specific IgG was poor, being confined to the acute phase and positively correlated with the frequency of an activated memory splenic B cell population. We noticed the expansion of a splenic CD4 T cell population expressing CXCR5 and Bcl-6 during acute infection that was associated with the differentiation of the activated memory B cell population. Moreover, the number of splenic germinal centers peaked at one month after infection, hence paralleling the production of specific IgG. However, at chronic infection these populations contracted impacting the production of parasite-specific IgG. Our study provides new insights into the immune events taking place in a physiologically relevant host and a mechanistic basis for the inefficient humoral response during VL.
Subject(s)
Germinal Center/immunology , Immunity, Humoral , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Spleen/immunology , Th1 Cells/immunology , Animals , Female , Gene Expression Regulation/immunology , Germinal Center/parasitology , Germinal Center/pathology , Interleukin-10/immunology , Leishmaniasis, Visceral/pathology , Macaca mulatta , Male , Proto-Oncogene Proteins c-bcl-6/immunology , Receptors, CXCR5/immunology , Spleen/parasitology , Spleen/pathology , Th1 Cells/pathologyABSTRACT
With the aim of improving the available drugs for the treatment of Chagas disease, individual enantiomers of nifurtimox were characterized. The results indicate that the enantiomers are equivalent in their in vitro activity against a panel of Trypanosoma cruzi strains; in vivo efficacy in a murine model of Chagas disease; in vitro toxicity and absorption, distribution, metabolism, and excretion characteristics; and in vivo pharmacokinetic properties. There is unlikely to be any therapeutic benefit of an individual nifurtimox enantiomer over the racemic mixture.
Subject(s)
Nifurtimox/chemistry , Nifurtimox/pharmacokinetics , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacokinetics , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Female , Humans , Male , Mice , Nifurtimox/therapeutic use , Rats , Rats, Sprague-Dawley , Stereoisomerism , Trypanocidal Agents/adverse effects , Trypanocidal Agents/therapeutic useABSTRACT
Sepsis is the third most common cause of neonatal death, with Group B Streptococcus (GBS) being the leading bacterial agent. The pathogenesis of neonatal septicemia is still unsolved. We described previously that host susceptibility to GBS infection is due to early IL-10 production. In this study, we investigated whether triggering TLR2 to produce IL-10 is a risk factor for neonatal bacterial sepsis. We observed that, in contrast to wild-type (WT) pups, neonatal TLR2-deficient mice were resistant to GBS-induced sepsis. Moreover, if IL-10 signaling were blocked in WT mice, they also were resistant to sepsis. This increased survival rate was due to an efficient recruitment of neutrophils to infected tissues that leads to bacterial clearance, thus preventing the development of sepsis. To confirm that IL-10 produced through TLR2 activation prevents neutrophil recruitment, WT pups were treated with the TLR2 agonist Pam3CSK4 prior to nebulization with the neutrophil chemotactic agent LTB4. Neutrophil recruitment into the neonatal lungs was inhibited in pups treated with Pam3CSK4. However, the migration was restored in Pam3CSK4-treated pups when IL-10 signaling was blocked (either by anti-IL-10R mAb treatment or by using IL-10-deficient mice). Our findings highlight that TLR2-induced IL-10 production is a key event in neonatal susceptibility to bacterial sepsis.
Subject(s)
Interleukin-10/metabolism , Neutrophil Infiltration/immunology , Neutrophils/immunology , Sepsis/immunology , Toll-Like Receptor 2/metabolism , Animals , Cell Movement/immunology , Female , Interleukin-10/antagonists & inhibitors , Interleukin-10/genetics , Leukotriene B4 , Lipopeptides/pharmacology , Lung/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Receptors, Interleukin-8B/biosynthesis , Sepsis/microbiology , Sepsis/mortality , Streptococcal Infections/immunology , Streptococcus agalactiae/immunology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 2/geneticsABSTRACT
A differential behavior among infected and bystander dendritic cells (DCs) has been explored in different infection models. We have analyzed both populations sorted on contact with visceral Leishmania infantum on a susceptible mice model evaluating the subsequent repercussions on adaptive immune response. Our results demonstrate a clear dichotomy between the immunomodulatory abilities of bystander and infected DCs. The bystander population presents increased levels of IL-12p40 and costimulatory molecules being capable to induce CD4(+) T cell activation with immune protective capabilities. In contrast, infected DCs, which express lower costimulatory molecules and higher levels of IL-10, promote the development of Leishmania Ag-specific, nonprotective T-bet(+)IFN-γ(+)IL-10(+) CD4(+) T cells with an effector phenotype. This specific polarization was found to be dependent on IL-12p70. Splenic infected DCs recovered from chronic infected animals are similarly capable to polarize ex vivo syngeneic naive CD4(+) T cells toward a T-bet(+)IFN-γ(+)IL-10(+) phenotype. Further analysis revealed that only MHC class II(high)-infected DCs were responsible for this polarization. The adoptive transfer of such polarized CD4(+) T cells facilitates visceral leishmaniasis in BALB/c mice in a clear contrast with their counterpart generated with bystander DCs that significantly potentiate protection. Further, we demonstrated that CD4(+) T cells primed by infected DCs in an IL-10 free system, thus deprived of T-bet(+)IFN-γ(+)IL-10(+) population, restore the immune response and reduce parasite load, supporting a deleterious role of IFN-γ(+)IL-10(+) T cells in the maintenance of infection. Overall, our results highlight novel subversion mechanisms by which nonprotective T-bet(+)IFN-γ(+)IL-10(+) T cells are associated with chronicity and prolonged parasite persistence.
Subject(s)
Cell Polarity/immunology , Dendritic Cells/immunology , Histocompatibility Antigens Class II/biosynthesis , Interferon-gamma/biosynthesis , Interleukin-10/biosynthesis , Leishmaniasis, Visceral/immunology , T-Box Domain Proteins/biosynthesis , T-Lymphocytes/immunology , Animals , Cells, Cultured , Chronic Disease , Coculture Techniques , Dendritic Cells/metabolism , Dendritic Cells/parasitology , Host-Pathogen Interactions/immunology , Immunophenotyping , Interleukin-10/deficiency , Leishmania infantum/immunology , Leishmania infantum/pathogenicity , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/prevention & control , Mice , Mice, Inbred BALB C , T-Lymphocytes/metabolism , T-Lymphocytes/parasitologyABSTRACT
Invariant NKT (iNKT) cells constitute a versatile T cell subset with important regulatory functions, which are thought to result essentially from their capacity to promptly produce cytokines that influence the Th1/Th2 balance. In this study, we report that these cells can also express Foxp3, an important transcriptional regulator associated with suppressive activity, once they have been exposed to TGF-ß. Foxp3 was expressed by iNKT cells from both peripheral and cord blood. CD4(+) iNKT cells acquired Foxp3 expression preferentially, although a lower proportion of their CD4(-) counterpart also became positive. All Foxp3(+) iNKT cells displayed CD25 but not necessarily CTLA4 or GITR, regardless of the upregulation of these markers in the presence of TGF-ß. Exposure to TGF-ß decreased IL-4 and IFN-γ production while increasing IL-10, independently from Foxp3 expression. IL-17 was not detected. TGF-ß induced high levels of Foxp3, but no suppressor activity, which emerged only in the presence of rapamycin. Peripheral and cord blood Foxp3(+) iNKT cells suppressed the proliferation of conventional autologous and heterologous CD4(+) T cells equally, in a cell contact-dependent and Ag-independent manner. Our findings demonstrate that human iNKT cells become suppressive in the presence of TGF-ß plus rapamycin, thus adding a new facet to their complex functional properties.