ABSTRACT
BACKGROUND: Human infants develop IgG responses to dietary antigens during the first 2 years of life. Yet, the source of these antibodies is unclear. In previous studies we reported on the thymus as a unique functional niche for plasma cells (PCs) specific to environmental antigens. OBJECTIVE: We sought to examine whether PCs specific to dietary antigens are detected in the infant thymus. METHODS: We tested IgG reactivity to 112 food antigens and allergens in the serum of 20 neonates and infants using microarrays. The presence of PC-secreting IgG specific to the most prominent antigens was then assessed among thymocytes in the same cohort. Using an LC-MS proteomics approach, we looked for traces of these antigens in the thymus. RESULTS: Our studies first confirmed that cow's milk proteins are prevalent targets of serum IgG in early life. Subjects with the highest serum IgG titers to cow's milk proteins also harbored IgG-producing PCs specific to the same antigens in the thymic niche. Furthermore, we detected multiple peptide fragments of cow's milk antigens in the thymus. Lastly, we verified that both serum IgG and IgG secreted by thymic PCs recognized the peptide epitopes found in the thymus. CONCLUSIONS: Our studies reveal the presence of antibody-secreting PCs specific to common dietary antigens in the infant thymus. The presence of these antigens in the thymus suggested that activation and differentiation of specific PCs occurred in this organ. Further studies are now warranted to evaluate the possible implication of these cells in tolerance to dietary antigens.
Subject(s)
Milk Hypersensitivity , Milk Proteins , Infant, Newborn , Animals , Female , Cattle , Infant , Humans , Antibody Formation , Plasma Cells , Immunoglobulin G , Milk , AllergensABSTRACT
Infection with Burkholderia pseudomallei or B. thailandensis triggers activation of the NLRP3 and NLRC4 inflammasomes leading to release of IL-1ß and IL-18 and death of infected macrophages by pyroptosis, respectively. The non-canonical inflammasome composed of caspase-11 is also activated by these bacteria and provides protection through induction of pyroptosis. The recent generation of bona fide caspase-1-deficient mice allowed us to reexamine in a mouse model of pneumonic melioidosis the role of caspase-1 independently of caspase-11 (that was also absent in previously generated Casp1-/- mice). Mice lacking either caspase-1 or caspase-11 were significantly more susceptible than wild type mice to intranasal infection with B. thailandensis. Absence of caspase-1 completely abolished production of IL-1ß and IL-18 as well as pyroptosis of infected macrophages. In contrast, in mice lacking caspase-11 IL-1ß and IL-18 were produced at normal level and macrophages pyroptosis was only marginally affected. Adoptive transfer of bone marrow indicated that caspase-11 exerted its protective action both in myeloid cells and in radio-resistant cell types. B. thailandensis was shown to readily infect mouse lung epithelial cells triggering pyroptosis in a caspase-11-dependent way in vitro and in vivo. Importantly, we show that lung epithelial cells do not express inflammasomes components or caspase-1 suggesting that this cell type relies exclusively on caspase-11 for undergoing cell death in response to bacterial infection. Finally, we show that IL-18's protective action in melioidosis was completely dependent on its ability to induce IFNγ production. In turn, protection conferred by IFNγ against melioidosis was dependent on generation of ROS through the NADPH oxidase but independent of induction of caspase-11. Altogether, our results identify two non-redundant protective roles for caspase-1 and caspase-11 in melioidosis: Caspase-1 primarily controls pyroptosis of infected macrophages and production of IL-18. In contrast, caspase-11 mediates pyroptosis of infected lung epithelial cells.
Subject(s)
Caspase 1/physiology , Caspases/physiology , Interleukin-18/metabolism , Lung/cytology , Melioidosis/prevention & control , Pyroptosis/physiology , Animals , Burkholderia/physiology , Caspases, Initiator , Cell Line , Disease Models, Animal , Female , Interferon-gamma/physiology , Macrophages/microbiology , Macrophages/physiology , Male , Melioidosis/immunology , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Respiratory Mucosa/cytologyABSTRACT
Disease outbreaks related to waterborne pathogen contamination throughout the world as well as challenges that lie ahead for addressing persistent infection are of renewed interest. In this research, we studied the effects of prolonged exposure of Salmonella enterica serovar Typhimurium to the cues encountered in the extracellular environment particularly in seawater microcosm on bacterial virulence and subsequent infection in Caco-2 cells. Our data show a significant difference in biofilm formation, swimming and swarming motilities between normal and stressed cells of S. Typhimurium under differing NaCl conditions (P < 0.05). Interestingly, adhesion, invasion and apoptotic activity to Caco-2 epithelial cells were determined during infection with normal and stressed Salmonella. Furthermore, we compared the expression of SPI-1 virulence genes (sopA, sopB, sopD, sopE2 and hilA) of normal and stressed S. Typhimurium in response to salt conditions encountered in the extracellular environment in LB broth and after epithelial cell exposure. The interest of the present study is due to the fact that to investigate the bacterial survival strategies during its movement from the natural surroundings to the host cell is fundamental to our understanding of the infection process during the host-pathogen interactions.
Subject(s)
Bacterial Proteins/genetics , Biofilms , Salmonella Infections/microbiology , Salmonella typhimurium/physiology , Virulence Factors/genetics , Apoptosis , Bacterial Proteins/metabolism , Caco-2 Cells , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Humans , Salmonella typhimurium/cytology , Salmonella typhimurium/genetics , Seawater/analysis , Seawater/microbiology , Sodium Chloride/analysis , Sodium Chloride/metabolism , Virulence Factors/metabolismABSTRACT
Skin lesions contribute to significant rates of morbidity and mortality in fish because they permit the entry of pathogens. Different seric immune parameters (IgM level, protease, antiprotease, peroxidase and lysozyme) and bactericidal activity (against Vibrio harveyi and Photobacterium damsealae) of gilthead seabream (Sparus aurata L.) specimens were evaluated after experimentally wounding fish in two body locations (above or below the lateral line). The results demonstrate that the level of several immune parameters present in fish serum (IgM, proteases, peroxidase and bactericidal activity) showed statistically significant variations depending on the site of the skin wound and the time post-wounding (from 0 to 7 days). However, other parameters (such as antiproteases or lysozyme) remained unaltered during the experiment and did not differs from the values recorded on control fish (non-wounded). The highest activities recorded coincided with the inflammatory healing phase. Moreover, many more significant variations were observed in fish wounded below the lateral line than in those wounded above the lateral line. The present results demonstrate the importance of skin integrity in the maintenance of fish body homeostasis.
Subject(s)
Immunity, Humoral/immunology , Sea Bream/immunology , Skin/immunology , Animals , Sea Bream/injuries , Skin/injuriesABSTRACT
BACKGROUND: Skin and its mucus are known to be the first barrier of defence against any external stressors. In fish, skin wounds frequently appear as a result of intensive culture and also some diseases have skin ulcers as external clinical signs. However, there is no information about the changes produced by the wounds in the mucosae. In the present paper, we have studied the alterations in the proteome map of skin mucus of gilthead seabream during healing of experimentally produced chronic wounds by 2-DE followed by LC-MS/MS. The corresponding gene expression changes of some identified skin proteins were also investigated through qPCR. RESULTS: Our study has successfully identified 21 differentially expressed proteins involved in immunity and stress processes as well as other metabolic and structural proteins and revealed, for the first time, that all are downregulated in the skin mucus of wounded seabream specimens. At transcript level, we found that four of nine markers (ighm, gst3, actb and krt1) were downregulated after causing the wounds while the rest of them remained unaltered in the wounded fish. Finally, ELISA analysis revealed that IgM levels were significantly lower in wounded fish compared to the control fish. CONCLUSIONS: Our study revealed a decreased-expression at protein and for some transcripts at mRNA levels in wounded fish, which could affect the functionality of these molecules, and therefore, delay the wound healing process and increase the susceptibility to any infection after wounds in the skin of gilthead seabream.
Subject(s)
Fish Proteins/metabolism , Mucus/metabolism , Proteome/metabolism , Sea Bream/metabolism , Skin/metabolism , Wound Healing , Animals , Biomarkers/metabolism , Proteome/genetics , Proteomics/methods , Sea Bream/growth & development , Skin/injuriesABSTRACT
Pathogenic bacteria such as Salmonella have the ability to respond to a wide variety of environmental stimuli. These responses allow them to survive and withstand insults both of an external location as well as within the host. The aim of this study was to investigate the effect of preadaptation in stressful conditions encountered in seawater microcosms for different periods of time on Salmonella Typhimurium survival, antibiotic susceptibility and interactions with Caco-2 cells. These results showed that the number of bacterial cells depends from the periods of stress in culture medium, highlighting the importance of using the right culture medium for the enumeration of stressed bacteria. The antibiotic resistance of starved cells was modified and their exposure to stressful conditions in seawater during 12 months significantly increased adhesion, invasion and cytotoxic activities on Caco-2 cells. Moreover, cellular cytokines IL-6 and IL-8 secretions were up-regulated. Present results seem to suggest that the preadaptation of S. Typhimurium in seawater microcosms affect the cultural characters by the appearance of the atypical cells that may play a critical role in the intestinal infection and in the systemic spread of the disease. These findings are very important to understand bacterial responses to changing conditions and explain the persistence of these atypical in eukaryotic cells.
Subject(s)
Bacterial Adhesion/drug effects , Cytokines/metabolism , Cytokines/pharmacology , Salmonella Infections/immunology , Salmonella typhimurium/drug effects , Salmonella typhimurium/immunology , Caco-2 Cells/cytology , Caco-2 Cells/drug effects , Culture Media , Drug Resistance, Bacterial , Environment , Host-Pathogen Interactions/immunology , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Models, Biological , Salmonella typhimurium/growth & development , Salmonella typhimurium/pathogenicity , Seawater/microbiology , Stress, Physiological , Time FactorsABSTRACT
Skin lesions are very common in fisheries, increasing the risk of pathogens entering through the wounded skin of the fish. In the present assay, the progression of wound healing was studied over a 7 day period in gilthead seabream (Sparus aurata L.) after making experimental wounds in two different locations: above (group A) or below (group B) the lateral line. Macroscopic observation confirmed faster wound healing of the wounds of fish from group B. Furthermore, several immune-related components were studied in the skin mucus of wounded fish to ascertain whether wounding altered the mucus composition compared with the values obtained from non-wounded fish (group C, control). Significant variations were detected depending on both the site of the wound and the studied parameter. At the same time, the gene expression profile of several immune-relevant genes, including pro-inflammatory (il1b,il6, tnfa), anti-inflamamtory (tgfb, il10), immunoglobulins (ighm, ight), involved in oxidative stress (sod, cat) and in skin regeneration (krt1and grhl1) were studied in the three groups of fish (A, B and C). The results throw further light on the complex process of skin wound healing in fish, since substantial changes in the skin mucus and in the skin gene expression originated by the presence of wounds were observed. This work underline some important differences depending on the place of the fish body where the wound is located. Of particular note was the fact that such changes depended on the site of the wound.
Subject(s)
Immunity, Mucosal , Sea Bream/immunology , Skin/immunology , Transcriptome , Wound Healing , Animals , Lateral Line System/immunology , Lateral Line System/injuries , Sea Bream/genetics , Sea Bream/injuries , Skin/injuriesABSTRACT
Skin mucus is increasingly used as a source for determining immunity-related proteins and enzymes. However, the ability to accurately measure some activities may be modified by inadequate handling and storage of the samples. This study aims to measure the effect of freezing and lyophilization at the time of collection on such activities. Fresh, frozen (immediately after collection at -20 °C and -80 °C) and lyophilized skin mucus samples obtained from the same groups of fish specimens of gilthead seabream (Sparus aurata L.) were analysed in the assays. The amount of total proteins and sugar residues (determined by lectin binding) present in skin mucus samples fell after both freezing and lyophilization of the samples. While no significant differences were exhibited in the levels of some proteins or enzymes (immunoglobulin M, antiprotease, peroxidase, esterase and alkaline phosphatase) determined in fresh or frozen mucus samples, protease and lysozyme activities were lower in frozen mucus samples than in fresh samples. Lyophilization of the mucus samples drastically decreased the total level of proteins obtained, as well as of protease, peroxidase, lysozyme and alkaline phosphatase activities. The results suggest that freezing skin mucus samples is more suitable than lyophilization if samples are stored before determining enzymatic activities.
Subject(s)
Freeze Drying/veterinary , Freezing , Immunity, Humoral , Sea Bream/immunology , Specimen Handling/veterinary , Animals , Mucus/immunology , SkinABSTRACT
Skin is the first barrier of defense on fish, which is crucial to protection against different stressors, including pathogens. Skin samples obtained from dorsal and ventral part of Sparus aurata specimens were incubated with Photobacterium damselae subsp. piscicida (a pathogen for this fish species), with Shewanella putrefaciens Pdp11 (a probiotic bacteria isolated from healthy gilthead seabream skin) or with both bacteria. The gene expression profile of nine cytokines (il1b, tnfa, il6, il7, il8, il15, il18, il10 and tgfb) was studied by qPCR in all the skin samples. The present findings revealed different patterns of cytokine profile in dorsal and ventral skin of gilthead seabream, which could be related to the influence and susceptibility to a possible infection.
Subject(s)
Cytokines/genetics , Fish Diseases/genetics , Fish Proteins/genetics , Gram-Negative Bacterial Infections/veterinary , Probiotics , Sea Bream , Animal Feed/analysis , Animals , Cytokines/metabolism , Diet/veterinary , Disease Susceptibility/immunology , Disease Susceptibility/microbiology , Disease Susceptibility/veterinary , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/metabolism , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Photobacterium/physiology , Shewanella putrefaciens/chemistryABSTRACT
High stocking density increases the number of emerging diseases triggering economic losses worldwide. Probiotics provide an effective and natural solution for preventing some diseases through an improvement of innate immune system among others. In the present work dietary administration of the probiotic Shewanella putrefaciens (known as Pdp11) was evaluated under stress by high stocking density after 2 and 4 weeks of administration to gilthead seabream (Sparus aurata) specimens. Results showed an increase in cellular peroxidase and respiratory burst activity as well as a modulation of cytokine profile when Pdp11 was administered to fish reared at high stocking density. Overall, our results showed how Pdp11 is not only able to improve to some extent the cellular and humoral immunity but also to increase the gene expression profile of pro-inflammatory cytokines such as il1b or il6 in response to high stocking density in gilthead seabream. These findings may support the potential use of this probiotic as functional feed against stress in fish farms.
Subject(s)
Cytokines/drug effects , Immunity, Innate/drug effects , Probiotics/chemistry , Sea Bream/physiology , Shewanella putrefaciens/chemistry , Transcriptome/drug effects , Animals , Aquaculture , Cytokines/metabolism , Population Density , Probiotics/administration & dosage , Sea Bream/genetics , Sea Bream/immunologyABSTRACT
Skin mucus is the first barrier of fish defence. Proteins from skin mucus of European sea bass (Dicentrarchus labrax) were identified by 2DE followed by LC-MS/MS. From all the identified proteins in the proteome map, we focus on the proteins associated with several immune pathways in fish. Furthermore, the real-time PCR transcript levels in skin are shown. Proteins found include apolipoprotein A1, calmodulin, complement C3, fucose-binding lectin, lysozyme and several caspases. To our knowledge, this is the first skin mucus proteome study and further transcriptional profiling of the identified proteins done on this bony fish species. This not only contributes knowledge on the routes involved in mucosal innate immunity, but also establishes a non-invasive technique based on locating immune markers with a potential use for prevention and/or diagnosis of fish diseases.
Subject(s)
Bass/metabolism , Mucus/metabolism , Proteome/metabolism , Skin/metabolism , Animals , Real-Time Polymerase Chain Reaction , Tandem Mass SpectrometryABSTRACT
The knowledge about the direct effects of heavy metals on fish leucocytes is still limited. We investigate the in vitro effects of heavy metals (Cd, Hg, Pb or As) on oxidative stress, viability and innate immune parameters of head-kidney leucocytes (HKLs) from European sea bass (Dicentrarchus labrax). Production of free oxygen radicals was induced by Cd, Hg and As, mainly after 30 min of exposure. Cd and Hg promoted both apoptosis and necrosis cell death while Pb and As did only apoptosis, in all cases in a concentration-dependent manner. Moreover, expression of genes related to oxidative stress and apoptosis was significantly induced by Hg and Pb but down-regulated by As. In addition, the expression of the metallothionein A gene was up-regulated by Cd and Pb exposure though this transcript, as well as the heat shock protein 70, was down-regulated by Hg. Cd, methylmercury (MeHg) and As reduced the phagocytic ability, whereas Hg and Pb increased it. Interestingly, all the heavy metals decreased the phagocytic capacity (the number of ingested particles per cell). Leucocyte respiratory burst changed depending on the metal exposure, usually in a time- and dose-manner. Interestingly, the expression of immune-related genes was slightly affected by Cd, MeHg, As or Pb being Hg the form producing the greatest alterations, which included down-regulation of immunoglobulin M and hepcidin, as well as the up-regulation of interleukin-1 beta mRNA levels. This study provides an in vitro approach for elucidating the heavy metals toxicity, and particularly the immunotoxicity, in fish leucocytes.
Subject(s)
Arsenic/toxicity , Bass/immunology , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Animals , Bass/genetics , Bass/metabolism , Cell Death/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Head Kidney/immunology , Immunotoxins/toxicity , Leukocytes/immunology , Oxidative Stress/drug effects , Phagocytosis/drug effects , Respiratory Burst/drug effectsABSTRACT
The aim of this study was to investigate the effects of date palm fruit extracts (DPFE) on skin mucosal immunity, immune related genes expression and growth performance of fry common carp (Cyprinus carpio). One hundred and twenty specimens (4.06 ± 0.13 g) were supplied and allocated into six aquaria; specimens in three aquaria were fed non-supplemented diet (control) while the fish in the other 3 aquaria were fed with DPFE at 200 ml kg(-1). At the end of feeding trial (8 weeks) skin mucus immune parameters (total immunoglobulins, lysozyme, protease and alkaline phosphatase activity) and immune related gene expression (tumor necrosis factor α [tnfa], lysozyme [ly] and interleukin-1-beta, [il1b]) in the head-kidney were studied. The results revealed that feeding carp fry with 200 ml kg(-1) DPFE remarkably elevated the three skin mucus immune parameters tested (P < 0.05). However, evaluation of immune related gene expression demonstrated that the expression of tnfa and il1b was considerably decreased (P < 0.05) in fish fed DPFE diet, while the expression of ly remained similar (P > 0.05) compared to control fish (fed control diet). Furthermore, growth performance parameters were significantly improved in fry fed DPFE (P < 0.05). More studies are needed to understand different aspects of DPFE administration in fry mucosal immunity.
Subject(s)
Carps/growth & development , Carps/immunology , Gene Expression , Immunity, Mucosal , Phoeniceae/chemistry , Plant Extracts/pharmacology , Animal Feed/analysis , Animals , Carps/genetics , Diet/veterinary , Dietary Supplements/analysis , Fruit/chemistry , Skin/immunologyABSTRACT
The potential benefits of probiotics when administering to fish could improve aquaculture production. The objective of this study was to examine the modulation of immune status and gut microbiota of gilthead seabream (Sparus aurata L.) specimens by a probiotic when administered encapsulated. Commercial diet was enriched with Shewanella putrefaciens Pdp11 (SpPdp11, at a concentration of 10(8) cfu g(-1)) before being encapsulated in calcium alginate beads. Fish were fed non-supplemented (control) or supplemented diet for 4 weeks. After 1, 2 and 4 weeks the main humoral and cellular immune parameters were determined. Furthermore, gene expression profile of five immune relevant genes (il1ß, bd, mhcIIα, ighm and tcrß) was studied by qPCR in head kidney. On the other hand, intestinal microbiota of fish was analysed at 7 and 30 days by DGGE. Results demonstrated that administration of alginate encapsulated SpPdp11 has immunostimulant properties on humoral parameters (IgM level and serum peroxidase activity). Although no immunostimulant effects were detected on leucocyte activities, significant increases were detected in the level of mRNA of head-kidney leucocytes for mhcIIα and tcrß after 4 weeks of feeding the encapsulated-probiotic diet. The administration of SpPdp11 encapsulated in alginate beads produced important changes in the DGGE patterns corresponding to the intestinal microbiota. Predominant bands related to lactic acid bacteria, such as Lactococcus and Lactobacillus strains, were sequenced from the DGGE patterns of fish fed the probiotic diet, whereas they were not sequenced from fish receiving the control diet. The convenience or not of probiotic encapsulation is discussed.
Subject(s)
Gastrointestinal Microbiome/immunology , Probiotics/pharmacology , Sea Bream/immunology , Shewanella putrefaciens , Alginates , Animals , Complement System Proteins/immunology , Diet , Erythrocytes/immunology , Glucuronic Acid , Head Kidney/cytology , Head Kidney/immunology , Hexuronic Acids , Immunity, Innate , Immunoglobulin M/blood , Leukocytes/immunology , Peroxidase/blood , Phagocytosis , Respiratory Burst , Saccharomyces cerevisiae , Sea Bream/blood , SheepABSTRACT
It is widely known that ß-glucans and probiotic bacteria are good immunostimulants for fish. In the present work we have evaluated the dietary effect of ß-1,3/1,6-glucan (isolated from Laminarina digitata) and Pdp 11 (Shewanella putrefaciens, probiotic isolated from gilthead seabream skin), single or combined, on growth, humoural (seric level of total IgM antibodies and peroxidase and antiprotease activities) and cellular innate immune response (peroxidase and phagocytic activities of head-kidney leucocytes), as well as the expression of immune-related genes in gilthead seabream (Sparus aurata). Four treatment groups were established: control (non-supplemented diet), Pdp 11 (10(9) cfu g(-1)), ß-1,3/1,6-glucan (0.1%) and ß-1,3/1,6-glucan + Pdp 11 (0.1% and 10(9) cfu g(-1), respectively). Fish were sampled after 1, 2 and 4 weeks of feeding. Interestingly, all supplemented diets produced increments in the seabream growth rates, mainly the Pdp 11-suplemented diet. Overall, Pdp 11 dietary administration resulted in decreased serum IgM levels and peroxidase activity. However, the seric antiprotease activity was increased in fish fed with both supplements together. Furthermore, ß-1,3/1,6-glucan and combined diet increased phagocytic activity after 2 or 4 weeks. At gene level, IL-1ß and INFγ transcripts were always up-regulated in HK but only the interleukin reached significance after 4 weeks in the group fed with ß-glucan. On the contrary, IgM gene expression tended to be down-regulated being significant after 1 week in seabream specimens fed with ß-glucan or ß-glucan plus Pdp 11. These results suggest that ß-1,3/1,6-glucan and Pdp 11 modulate the immune response and stimulates growth of the gilthead seabream, one of the species with the highest rate of production in Mediterranean aquaculture.
Subject(s)
Diet/veterinary , Gene Expression Regulation/drug effects , Glucans/pharmacology , Immunity, Innate/drug effects , Sea Bream/physiology , Shewanella putrefaciens/chemistry , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Animal Feed/analysis , Animals , Glucans/administration & dosage , Probiotics/administration & dosage , Probiotics/pharmacology , Random Allocation , Real-Time Polymerase Chain Reaction/veterinary , Sea Bream/genetics , Sea Bream/growth & development , Sea Bream/immunologyABSTRACT
Chemokine receptors are a complex superfamily of surface G protein-coupled receptors present mostly in leukocytes. In this chapter, we review the presence and functions of chemokine receptors in the immune cells of the primary and secondary lymphoid organs. Those include bone marrow, thymus, spleen, lymph nodes, and Peyer's patches as the main components of the gut-associated lymphoid tissue. There are general groups of chemokine receptors: conventional and atypical. We will mostly cover the role of conventional chemokine receptors, which are divided into four classes (CC, CXC, CX3C, and XC). Some relevant members are CXCR4, CXCR5, CCR4 and CCR7. For example, CXCR4 is a key chemokine receptor in the bone marrow controlling from the homing of progenitor cells into the bone marrow, the development of B cells, to the homing of long-lived plasma cells to this primary lymphoid organ. CCR7 and CCR4 are two of the main players in the thymus. CCR7 along with CCR9 control the traffic of thymic seed progenitors into the thymus, while CCR4 and CCR7 are critical for the entry of thymocytes into the medulla and as controllers of the central tolerance in the thymus. CXCR4 and CXCR5 have major roles in the spleen, guiding the maturation and class-switching of B cells in the different areas of the germinal center. In the T-cell zone, CCR7 guides the differentiation of naïve T cells. CCR7 also controls and directs the entry of T cells, B cells, and dendritic cells into secondary lymphoid tissues, including the spleen and lymph nodes. As new technologies emerge, techniques such as high dimensional spectral flow cytometry or single-cell sequencing allow a more comprehensive knowledge of the chemokine receptor network and their ligands, as well as the discovery of new interactions mediating unknown and overlooked mechanisms in health and disease.
Subject(s)
Lymphoid Tissue , Receptors, Chemokine , Humans , Animals , Receptors, Chemokine/metabolism , Lymphoid Tissue/metabolism , Thymus Gland/metabolism , Thymus Gland/cytologyABSTRACT
Genetic mutations causing primary mitochondrial disease (i.e those compromising oxidative phosphorylation [OxPhos]) resulting in reduced bioenergetic output display great variability in their clinical features, but the reason for this is unknown. We hypothesized that disruption of the communication between endoplasmic reticulum (ER) and mitochondria at mitochondria-associated ER membranes (MAM) might play a role in this variability. To test this, we assayed MAM function and ER-mitochondrial communication in OxPhos-deficient cells, including cybrids from patients with selected pathogenic mtDNA mutations. Our results show that each of the various mutations studied indeed altered MAM functions, but notably, each disorder presented with a different MAM "signature". We also found that mitochondrial membrane potential is a key driver of ER-mitochondrial connectivity. Moreover, our findings demonstrate that disruption in ER-mitochondrial communication has consequences for cell survivability that go well beyond that of reduced ATP output. The findings of a "MAM-OxPhos" axis, the role of mitochondrial membrane potential in controlling this process, and the contribution of MAM dysfunction to cell death, reveal a new relationship between mitochondria and the rest of the cell, as well as providing new insights into the diagnosis and treatment of these devastating disorders.
Subject(s)
Endoplasmic Reticulum , Membrane Potential, Mitochondrial , Mitochondria , Mitochondrial Diseases , Oxidative Phosphorylation , Humans , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mutation/genetics , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/geneticsABSTRACT
Perturbations in mitochondrial dynamics have been observed in most neurodegenerative diseases. Here, we focus on manganese (Mn)-induced Parkinsonism-like neurodegeneration, a disorder associated with the preferential of Mn in the basal ganglia where the mitochondria are considered an early target. Despite the extensive characterization of the clinical presentation of manganism, the mechanism by which Mn mediated mitochondrial toxicity is unclear. In this study we hypothesized whether Mn exposure alters mitochondrial activity, including axonal transport of mitochondria and mitochondrial dynamics, morphology, and network. Using primary neuron cultures exposed to 100 µM Mn (which is considered the threshold of Mn toxicity in vitro) and intraperitoneal injections of MnCl2 (25mg/kg) in rat, we observed that Mn increased mitochondrial fission mediated by phosphorylation of dynamin-related protein-1 at serine 616 (p-s616-DRP1) and decreased mitochondrial fusion proteins (MFN1 and MFN2) leading to mitochondrial fragmentation, defects in mitochondrial respiratory capacity, and mitochondrial ultrastructural damage in vivo and in vitro. Furthermore, Mn exposure impaired mitochondrial trafficking by decreasing dynactin (DCTN1) and kinesin-1 (KIF5B) motor proteins and increasing destabilization of the cytoskeleton at protein and gene levels. In addition, mitochondrial communication may also be altered by Mn exposure, increasing the length of nanotunnels to reach out distal mitochondria. These findings revealed an unrecognized role of Mn in dysregulation of mitochondrial dynamics providing a potential explanation of early hallmarks of the disorder, as well as a possible common pathway with neurological disorders arising upon chronic Mn exposure.
Subject(s)
Corpus Striatum/drug effects , Manganese/toxicity , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Neurons/drug effects , Animals , Cells, Cultured , Corpus Striatum/metabolism , Corpus Striatum/pathology , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/physiology , Male , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Dynamics/physiology , Neurons/metabolism , Neurons/pathology , Rats , Rats, Sprague-DawleyABSTRACT
BACKGROUND: Antibody mediated rejection (AMR) is an increasingly studied cause of graft failure after heart transplantation. AMR diagnosis previously required the detection of circulating donor specific antibodies (DSA); however, the most recent criteria only require pathological findings. This classification defined a subset of patients with AMR, yet without known antibodies. Here, we sought to evaluate differences in the transcriptome profile associated with different types of AMR. METHODS: RNA sequencing was used on endomyocardial biopsies to analyze and compare transcriptomic profiles associated with different subtypes of AMR defined by immunopathological and histopathological findings, as well as the presence or absence of DSA. Gene expression profiles were characterized for each diagnostic group. RESULTS: The most divergent gene expression profiles were observed between patients with or without DSA. AMR subtypes associated with DSA showed expression of signature genes involved in monocyte activation and response to interferon. There was also substantial difference between the transcriptomic profiles of AMR defined by histopathological and immunopathological findings, the latter being associated with expression of mucin genes. In contrast, there was no differential RNA expression between patients with pAMR1i without DSA and those without AMR. Likewise, no differential expression was observed between patients with pAMR1h with DSA and pAMR2. CONCLUSIONS: Overall, our studies reveal different expression profiles in endomyocardial biopsies in relation to some key criteria used to diagnose AMR. These findings support the view that the diagnosis of AMR encompasses several phenotypes that may rely on distinct mechanisms of injury.
Subject(s)
Graft Rejection/immunology , Heart Transplantation/adverse effects , Isoantibodies/immunology , Myocardium/pathology , Tissue Donors , Transcriptome/immunology , Adolescent , Adult , Biopsy , Child , Female , Graft Rejection/diagnosis , Graft Survival/immunology , Humans , Male , Middle Aged , Myocardium/immunology , Young AdultABSTRACT
The thymus is a central lymphoid organ primarily responsible for the development of T cells. A small proportion of B cells, however, also reside in the thymus to assist negative selection of self-reactive T cells. Here we show that the thymus of human neonates contains a consistent contingent of CD138+ plasma cells, producing all classes and subclasses of immunoglobulins with the exception of IgD. These antibody-secreting cells are part of a larger subset of B cells that share the expression of signature genes defining mouse B1 cells, yet lack the expression of complement receptors CD21 and CD35. Data from single-cell transcriptomic, clonal correspondence and in vitro differentiation assays support the notion of intrathymic CD138+ plasma cell differentiation, alongside other B cell subsets with distinctive molecular phenotypes. Lastly, neonatal thymic plasma cells also include clones reactive to commensal and pathogenic bacteria that commonly infect children born with antibody deficiency. Thus, our findings point to the thymus as a source of innate humoral immunity in human neonates.