Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35193976

ABSTRACT

Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (Cl-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl- thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.


Subject(s)
Guidelines as Topic , Lakes , Salinity , Water Quality , Animals , Anthropogenic Effects , Ecosystem , Europe , North America , Zooplankton
2.
Environ Sci Technol ; 55(8): 5272-5281, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33764736

ABSTRACT

In addition to a rise in global air and water mean temperatures, extreme climate events such as heat waves are increasing in frequency, intensity, and duration in many regions of the globe. Developing a mechanistic understanding of the impacts of heat waves on key ecosystem processes and how they differ from just an increase in mean temperatures is therefore of utmost importance for adaptive management against effects of global change. However, little is known about the impact of extreme events on freshwater ecosystem processes, particularly the decomposition of macrophyte detritus. We performed a mesocosm experiment to evaluate the impact of warming and heat waves on macrophyte detrital decomposition, applied as a fixed increment (+4 °C) above ambient and a fluctuating treatment with similar energy input, ranging from 0 to 6 °C above ambient (i.e., simulating heat waves). We showed that both warming and heat waves significantly accelerate dry mass loss of the detritus and carbon (C) release but found no significant differences between the two heated treatments on the effects on detritus dry mass loss and C release amount. This suggests that moderate warming indirectly enhanced macrophyte detritus dry mass loss and C release mainly by the amount of energy input rather than by the way in which warming was provided (i.e., by a fixed increment or in heat waves). However, we found significantly different amounts of nitrogen (N) and phosphorus (P) released between the two warming treatments, and there was an asymmetric response of N and P release patterns to the two warming treatments, possibly due to species-specific responses of decomposers to short-term temperature fluctuations and litter quality. Our results conclude that future climate scenarios can significantly accelerate organic matter decomposition and C, N, and P release from decaying macrophytes, and more importantly, there are asymmetric alterations in macrophyte-derived detrital N and P release dynamic. Therefore, future climate change scenarios could lead to alterations in N/P ratios in the water column via macrophyte decomposition processes and ultimately affect the structure and function of aquatic ecosystems, especially in the plankton community.


Subject(s)
Ecosystem , Hot Temperature , Climate Change , Fresh Water , Nitrogen , Nutrients
3.
Circulation ; 140(9): 765-778, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31315475

ABSTRACT

BACKGROUND: Restrictive cardiomyopathy is a rare heart disease associated with mutations in sarcomeric genes and with phenotypic overlap with hypertrophic cardiomyopathy. There is no approved therapy directed at the underlying cause. Here, we explore the potential of an interfering RNA (RNAi) therapeutic for a human sarcomeric mutation in MYL2 causative of restrictive cardiomyopathy in a mouse model. METHODS: A short hairpin RNA (M7.8L) was selected from a pool for specificity and efficacy. Two groups of myosin regulatory light chain N47K transgenic mice were injected with M7.8L packaged in adeno-associated virus 9 at 3 days of age and 60 days of age. Mice were subjected to treadmill exercise and echocardiography after treatment to determine maximal oxygen uptake and left ventricular mass. At the end of treatment, heart, lung, liver, and kidney tissue was harvested to determine viral tropism and for transcriptomic and proteomic analysis. Cardiomyocytes were isolated for single-cell studies. RESULTS: A one-time injection of AAV9-M7.8L RNAi in 3-day-old humanized regulatory light chain mutant transgenic mice silenced the mutated allele (RLC-47K) with minimal effects on the normal allele (RLC-47N) assayed at 16 weeks postinjection. AAV9-M7.8L RNAi suppressed the expression of hypertrophic biomarkers, reduced heart weight, and attenuated a pathological increase in left ventricular mass. Single adult cardiac myocytes from mice treated with AAV9-M7.8L showed partial restoration of contraction, relaxation, and calcium kinetics. In addition, cardiac stress protein biomarkers, such as calmodulin-dependent protein kinase II and the transcription activator Brg1 were reduced, suggesting recovery toward a healthy myocardium. Transcriptome analyses further revealed no significant changes of argonaute (AGO1, AGO2) and endoribonuclease dicer (DICER1) transcripts, and endogenous microRNAs were preserved, suggesting that the RNAi pathway was not saturated. CONCLUSIONS: Our results show the feasibility, efficacy, and safety of RNAi therapeutics directed towards human restrictive cardiomyopathy. This is a promising step toward targeted therapy for a prevalent human disease.


Subject(s)
Cardiomyopathy, Restrictive/pathology , Myosin Light Chains/metabolism , RNA Interference , Alleles , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomyopathy, Restrictive/prevention & control , DNA Helicases/genetics , DNA Helicases/metabolism , Disease Models, Animal , Gene Regulatory Networks , Genetic Vectors/metabolism , Humans , Mice , Mice, Transgenic , Muscle Contraction , Mutagenesis, Site-Directed , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myosin Light Chains/antagonists & inhibitors , Myosin Light Chains/genetics , RNA, Small Interfering/metabolism
4.
Glob Chang Biol ; 26(5): 2756-2784, 2020 05.
Article in English | MEDLINE | ID: mdl-32133744

ABSTRACT

In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.


Subject(s)
Lakes , Phytoplankton , Climate Change , Ecosystem , Rivers
5.
Glob Chang Biol ; 24(10): 4747-4757, 2018 10.
Article in English | MEDLINE | ID: mdl-29963731

ABSTRACT

In addition to an increase in mean temperature, extreme climatic events, such as heat waves, are predicted to increase in frequency and intensity with climate change, which are likely to affect organism interactions, seasonal succession, and resting stage recruitment patterns in terrestrial as well as in aquatic ecosystems. For example, freshwater zooplankton with different life-history strategies, such as sexual or parthenogenetic reproduction, may respond differently to increased mean temperatures and rapid temperature fluctuations. Therefore, we conducted a long-term (18 months) mesocosm experiment where we evaluated the effects of increased mean temperature (4°C) and an identical energy input but delivered through temperature fluctuations, i.e., as heat waves. We show that different rotifer prey species have specific temperature requirements and use limited and species-specific temperature windows for recruiting from the sediment. On the contrary, co-occurring predatory cyclopoid copepods recruit from adult or subadult resting stages and are therefore able to respond to short-term temperature fluctuations. Hence, these different life-history strategies affect the interactions between cyclopoid copepods and rotifers by reducing the risk of a temporal mismatch in predator-prey dynamics in a climate change scenario. Thus, we conclude that predatory cyclopoid copepods with long generation time are likely to benefit from heat waves since they rapidly "wake up" even at short temperature elevations and thereby suppress fast reproducing prey populations, such as rotifers. In a broader perspective, our findings suggest that differences in life-history traits will affect predator-prey interactions, and thereby alter community dynamics, in a future climate change scenario.


Subject(s)
Climate Change , Hot Temperature , Zooplankton , Animals , Copepoda/physiology , Ecosystem , Fresh Water , Predatory Behavior , Reproduction
6.
RNA ; 21(6): 1066-84, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25883046

ABSTRACT

This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5-3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson-Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/.


Subject(s)
Computational Biology/methods , RNA/chemistry , Crystallography, X-Ray , Models, Molecular , Nucleic Acid Conformation , RNA, Messenger/chemistry , RNA, Transfer/chemistry , Software
7.
Glob Chang Biol ; 23(1): 108-116, 2017 01.
Article in English | MEDLINE | ID: mdl-27359059

ABSTRACT

Extreme climatic events, such as heat waves, are predicted to increase in frequency and intensity during the next hundred years, which may accelerate shifts in hydrological regimes and submerged macrophyte composition in freshwater ecosystems. Since macrophytes are profound components of aquatic systems, predicting their response to extreme climatic events is crucial for implementation of climate change adaptation strategies. We therefore performed an experiment in 24 outdoor enclosures (400 L) separating the impact of a 4 °C increase in mean temperature with the same increase, that is the same total amount of energy input, but resembling a climate scenario with extreme variability, oscillating between 0 °C and 8 °C above present conditions. We show that at the moderate nutrient conditions provided in our study, neither an increase in mean temperature nor heat waves lead to a shift from a plant-dominated to an algal-dominated system. Instead, we show that species-specific responses to climate change among submerged macrophytes may critically influence species composition and thereby ecosystem functioning. Our results also imply that more fluctuating temperatures affect the number of flowers produced per plant leading to less sexual reproduction. Our findings therefore suggest that predicted alterations in climate regimes may influence both plant interactions and reproductive strategies, which have the potential to inflict changes in biodiversity, community structure and ecosystem functioning.


Subject(s)
Biodiversity , Climate Change , Ecosystem , Plants , Fresh Water , Hot Temperature , Reproduction
8.
Nucleic Acids Res ; 43(W1): W522-6, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25999345

ABSTRACT

Customized RNA synthesis is in demand for biological and biotechnological research. While chemical synthesis and gel or chromatographic purification of RNA is costly and difficult for sequences longer than tens of nucleotides, a pipeline of primer assembly of DNA templates, in vitro transcription by T7 RNA polymerase and kit-based purification provides a cost-effective and fast alternative for preparing RNA molecules. Nevertheless, designing template primers that optimize cost and avoid mispriming during polymerase chain reaction currently requires expert inspection, downloading specialized software or both. Online servers are currently not available or maintained for the task. We report here a server named Primerize that makes available an efficient algorithm for primer design developed and experimentally tested in our laboratory for RNA domains with lengths up to 300 nucleotides. Free access: http://primerize.stanford.edu.


Subject(s)
DNA Primers/chemistry , RNA, Untranslated/biosynthesis , Software , Algorithms , Internet , Nucleic Acid Conformation , Polymerase Chain Reaction , Sequence Analysis, DNA , Templates, Genetic , Transcription, Genetic
9.
RNA ; 20(11): 1815-26, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25183835

ABSTRACT

The three-dimensional conformations of noncoding RNAs underpin their biochemical functions but have largely eluded experimental characterization. Here, we report that integrating a classic mutation/rescue strategy with high-throughput chemical mapping enables rapid RNA structure inference with unusually strong validation. We revisit a 16S rRNA domain for which SHAPE (selective 2'-hydroxyl acylation with primer extension) and limited mutational analysis suggested a conformational change between apo- and holo-ribosome conformations. Computational support estimates, data from alternative chemical probes, and mutate-and-map (M(2)) experiments highlight issues of prior methodology and instead give a near-crystallographic secondary structure. Systematic interrogation of single base pairs via a high-throughput mutation/rescue approach then permits incisive validation and refinement of the M(2)-based secondary structure. The data further uncover the functional conformation as an excited state (20 ± 10% population) accessible via a single-nucleotide register shift. These results correct an erroneous SHAPE inference of a ribosomal conformational change, expose critical limitations of conventional structure mapping methods, and illustrate practical steps for more incisively dissecting RNA dynamic structure landscapes.


Subject(s)
RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , High-Throughput Screening Assays , Models, Molecular , Mutation , Nucleic Acid Conformation , RNA Folding , Ribosomes/metabolism
10.
PLoS Comput Biol ; 11(11): e1004473, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26566145

ABSTRACT

Landscapes exhibiting multiple secondary structures arise in natural RNA molecules that modulate gene expression, protein synthesis, and viral infection [corrected]. We report herein that high-throughput chemical experiments can isolate an RNA's multiple alternative secondary structures as they are stabilized by systematic mutagenesis (mutate-and-map, M2) and that a computational algorithm, REEFFIT, enables unbiased reconstruction of these states' structures and populations. In an in silico benchmark on non-coding RNAs with complex landscapes, M2-REEFFIT recovers 95% of RNA helices present with at least 25% population while maintaining a low false discovery rate (10%) and conservative error estimates. In experimental benchmarks, M2-REEFFIT recovers the structure landscapes of a 35-nt MedLoop hairpin, a 110-nt 16S rRNA four-way junction with an excited state, a 25-nt bistable hairpin, and a 112-nt three-state adenine riboswitch with its expression platform, molecules whose characterization previously required expert mutational analysis and specialized NMR or chemical mapping experiments. With this validation, M2-REEFFIT enabled tests of whether artificial RNA sequences might exhibit complex landscapes in the absence of explicit design. An artificial flavin mononucleotide riboswitch and a randomly generated RNA sequence are found to interconvert between three or more states, including structures for which there was no design, but that could be stabilized through mutations. These results highlight the likely pervasiveness of rich landscapes with multiple secondary structures in both natural and artificial RNAs and demonstrate an automated chemical/computational route for their empirical characterization.


Subject(s)
Algorithms , Computational Biology/methods , Mutation/genetics , Nucleic Acid Conformation , RNA/chemistry , Sequence Analysis, RNA/methods , Models, Molecular , RNA/genetics , Riboswitch
11.
Nucleic Acids Res ; 41(Web Server issue): W492-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23761448

ABSTRACT

To facilitate the analysis of large-scale high-throughput capillary electrophoresis data, we previously proposed a suite of efficient analysis software named HiTRACE (High Throughput Robust Analysis of Capillary Electrophoresis). HiTRACE has been used extensively for quantitating data from RNA and DNA structure mapping experiments, including mutate-and-map contact inference, chromatin footprinting, the Eterna RNA design project and other high-throughput applications. However, HiTRACE is based on a suite of command-line MATLAB scripts that requires nontrivial efforts to learn, use and extend. Here, we present HiTRACE-Web, an online version of HiTRACE that includes standard features previously available in the command-line version and additional features such as automated band annotation and flexible adjustment of annotations, all via a user-friendly environment. By making use of parallelization, the on-line workflow is also faster than software implementations available to most users on their local computers. Free access: http://hitrace.org.


Subject(s)
DNA/chemistry , Electrophoresis, Capillary/methods , RNA/chemistry , Software , Internet
12.
RNA ; 17(3): 522-34, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21239468

ABSTRACT

We present a rapid experimental strategy for inferring base pairs in structured RNAs via an information-rich extension of classic chemical mapping approaches. The mutate-and-map method, previously applied to a DNA/RNA helix, systematically searches for single mutations that enhance the chemical accessibility of base-pairing partners distant in sequence. To test this strategy for structured RNAs, we have carried out mutate-and-map measurements for a 35-nt hairpin, called the MedLoop RNA, embedded within an 80-nt sequence. We demonstrate the synthesis of all 105 single mutants of the MedLoop RNA sequence and present high-throughput DMS, CMCT, and SHAPE modification measurements for this library at single-nucleotide resolution. The resulting two-dimensional data reveal visually clear, punctate features corresponding to RNA base pair interactions as well as more complex features; these signals can be qualitatively rationalized by comparison to secondary structure predictions. Finally, we present an automated, sequence-blind analysis that permits the confident identification of nine of the 10 MedLoop RNA base pairs at single-nucleotide resolution, while discriminating against all 1460 false-positive base pairs. These results establish the accuracy and information content of the mutate-and-map strategy and support its feasibility for rapidly characterizing the base-pairing patterns of larger and more complex RNA systems.


Subject(s)
Base Pairing , DNA/chemistry , Mutation/genetics , Nucleic Acid Conformation , RNA/chemistry , Base Sequence , DNA/genetics , Molecular Sequence Data , Mutagenesis , RNA/genetics
13.
RNA ; 17(7): 1204-12, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21610212

ABSTRACT

Nucleic acids are particularly amenable to structural characterization using chemical and enzymatic probes. Each individual structure mapping experiment reveals specific information about the structure and/or dynamics of the nucleic acid. Currently, there is no simple approach for making these data publically available in a standardized format. We therefore developed a standard for reporting the results of single nucleotide resolution nucleic acid structure mapping experiments, or SNRNASMs. We propose a schema for sharing nucleic acid chemical probing data that uses generic public servers for storing, retrieving, and searching the data. We have also developed a consistent nomenclature (ontology) within the Ontology of Biomedical Investigations (OBI), which provides unique identifiers (termed persistent URLs, or PURLs) for classifying the data. Links to standardized data sets shared using our proposed format along with a tutorial and links to templates can be found at http://snrnasm.bio.unc.edu.


Subject(s)
Chromosome Mapping/methods , Databases, Nucleic Acid , Information Dissemination , Nucleic Acid Conformation , RNA/chemistry , Algorithms , Archives , Base Sequence , Chromosome Mapping/classification , Humans , Molecular Sequence Data , Nucleic Acids/analysis , Nucleic Acids/chemistry , RNA/analysis , Research Design , Validation Studies as Topic
14.
Bioinformatics ; 28(22): 3006-8, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22976082

ABSTRACT

SUMMARY: We have established an RNA mapping database (RMDB) to enable structural, thermodynamic and kinetic comparisons across single-nucleotide-resolution RNA structure mapping experiments. The volume of structure mapping data has greatly increased since the development of high-throughput sequencing techniques, accelerated software pipelines and large-scale mutagenesis. For scientists wishing to infer relationships between RNA sequence/structure and these mapping data, there is a need for a database that is curated, tagged with error estimates and interfaced with tools for sharing, visualization, search and meta-analysis. Through its on-line front-end, the RMDB allows users to explore single-nucleotide-resolution mapping data in heat-map, bar-graph and colored secondary structure graphics; to leverage these data to generate secondary structure hypotheses; and to download the data in standardized and computer-friendly files, including the RDAT and community-consensus SNRNASM formats. At the time of writing, the database houses 53 entries, describing more than 2848 experiments of 1098 RNA constructs in several solution conditions and is growing rapidly. AVAILABILITY: Freely available on the web at http://rmdb.stanford.edu. CONTACT: rhiju@stanford.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Online.


Subject(s)
Databases, Nucleic Acid , Nucleic Acid Conformation , RNA/chemistry , Algorithms , Base Sequence , Computers , Software
15.
Biochemistry ; 51(36): 7037-9, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22913637

ABSTRACT

For decades, dimethyl sulfate (DMS) mapping has informed manual modeling of RNA structure in vitro and in vivo. Here, we incorporate DMS data into automated secondary structure inference using an energy minimization framework developed for 2'-OH acylation (SHAPE) mapping. On six noncoding RNAs with crystallographic models, DMS-guided modeling achieves overall false negative and false discovery rates of 9.5% and 11.6%, respectively, comparable to or better than those of SHAPE-guided modeling, and bootstrapping provides straightforward confidence estimates. Integrating DMS-SHAPE data and including 1-cyclohexyl(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate (CMCT) reactivities provide small additional improvements. These results establish DMS mapping, an already routine technique, as a quantitative tool for unbiased RNA secondary structure modeling.


Subject(s)
Computational Biology/methods , Nucleic Acid Conformation/drug effects , RNA, Bacterial/chemistry , Sulfuric Acid Esters/pharmacology , Acylation , Automation , Base Sequence , Models, Molecular , RNA, Bacterial/genetics
16.
Circ Genom Precis Med ; 15(4): e003563, 2022 08.
Article in English | MEDLINE | ID: mdl-35671065

ABSTRACT

BACKGROUND: The study of hypertrophic cardiomyopathy (HCM) can yield insight into the mechanisms underlying the complex trait of cardiac hypertrophy. To date, most genetic variants associated with HCM have been found in sarcomeric genes. Here, we describe a novel HCM-associated variant in the noncanonical Wnt signaling interactor WTIP (Wilms tumor interacting protein) and provide evidence of a role for WTIP in complex disease. METHODS: In a family affected by HCM, we used exome sequencing and identity-by-descent analysis to identify a novel variant in WTIP (p.Y233F). We knocked down WTIP in isolated neonatal rat ventricular myocytes with lentivirally delivered short hairpin ribonucleic acids and in Danio rerio via morpholino injection. We performed weighted gene coexpression network analysis for WTIP in human cardiac tissue, as well as association analysis for WTIP variation and left ventricular hypertrophy. Finally, we generated induced pluripotent stem cell-derived cardiomyocytes from patient tissue, characterized size and calcium cycling, and determined the effect of verapamil treatment on calcium dynamics. RESULTS: WTIP knockdown caused hypertrophy in neonatal rat ventricular myocytes and increased cardiac hypertrophy, peak calcium, and resting calcium in D rerio. Network analysis of human cardiac tissue indicated WTIP as a central coordinator of prohypertrophic networks, while common variation at the WTIP locus was associated with human left ventricular hypertrophy. Patient-derived WTIP p.Y233F-induced pluripotent stem cell-derived cardiomyocytes recapitulated cellular hypertrophy and increased resting calcium, which was ameliorated by verapamil. CONCLUSIONS: We demonstrate that a novel genetic variant found in a family with HCM disrupts binding to a known Wnt signaling protein, misregulating cardiomyocyte calcium dynamics. Further, in orthogonal model systems, we show that expression of the gene WTIP is important in complex cardiac hypertrophy phenotypes. These findings, derived from the observation of a rare Mendelian disease variant, uncover a novel disease mechanism with implications across diverse forms of cardiac hypertrophy.


Subject(s)
Co-Repressor Proteins/metabolism , Cytoskeletal Proteins/metabolism , Hypertrophy, Left Ventricular/metabolism , Animals , Calcium/metabolism , Cardiomegaly/metabolism , Cardiomyopathy, Hypertrophic/metabolism , Humans , Rats , Verapamil
17.
Trends Ecol Evol ; 37(5): 440-453, 2022 05.
Article in English | MEDLINE | ID: mdl-35058082

ABSTRACT

The widespread salinisation of freshwater ecosystems poses a major threat to the biodiversity, functioning, and services that they provide. Human activities promote freshwater salinisation through multiple drivers (e.g., agriculture, resource extraction, urbanisation) that are amplified by climate change. Due to its complexity, we are still far from fully understanding the ecological and evolutionary consequences of freshwater salinisation. Here, we assess current research gaps and present a research agenda to guide future studies. We identified different gaps in taxonomic groups, levels of biological organisation, and geographic regions. We suggest focusing on global- and landscape-scale processes, functional approaches, genetic and molecular levels, and eco-evolutionary dynamics as key future avenues to predict the consequences of freshwater salinisation for ecosystems and human societies.


Subject(s)
Ecosystem , Fresh Water , Biodiversity , Biological Evolution , Climate Change , Humans
18.
Biochemistry ; 50(37): 8049-56, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21842868

ABSTRACT

Single-nucleotide-resolution chemical mapping for structured RNA is being rapidly advanced by new chemistries, faster readouts, and coupling to computational algorithms. Recent tests have shown that selective 2'-hydroxyl acylation by primer extension (SHAPE) can give near-zero error rates (0-2%) in modeling the helices of RNA secondary structure. Here, we benchmark the method using six molecules for which crystallographic data are available: tRNA(phe) and 5S rRNA from Escherichia coli, the P4-P6 domain of the Tetrahymena group I ribozyme, and ligand-bound domains from riboswitches for adenine, cyclic di-GMP, and glycine. SHAPE-directed modeling of these highly structured RNAs gave an overall false negative rate (FNR) of 17% and a false discovery rate (FDR) of 21%, with at least one helix prediction error in five of the six cases. Extensive variations of data processing, normalization, and modeling parameters did not significantly mitigate modeling errors. Only one varation, filtering out data collected with deoxyinosine triphosphate during primer extension, gave a modest improvement (FNR = 12%, and FDR = 14%). The residual structure modeling errors are explained by the insufficient information content of these RNAs' SHAPE data, as evaluated by a nonparametric bootstrapping analysis. Beyond these benchmark cases, bootstrapping suggests a low level of confidence (<50%) in the majority of helices in a previously proposed SHAPE-directed model for the HIV-1 RNA genome. Thus, SHAPE-directed RNA modeling is not always unambiguous, and helix-by-helix confidence estimates, as described herein, may be critical for interpreting results from this powerful methodology.


Subject(s)
Models, Genetic , Nucleic Acid Conformation , RNA, Bacterial/genetics , RNA, Ribosomal, 5S/chemistry , RNA, Transfer/chemistry , Base Sequence , Chromosome Mapping/methods , Crystallography, X-Ray/methods , Molecular Sequence Data , RNA, Bacterial/chemistry , RNA, Ribosomal, 5S/genetics , RNA, Transfer/genetics
19.
Article in English | MEDLINE | ID: mdl-34639733

ABSTRACT

COVID-19 has caused a certain proportion of patients to be hospitalized in intensive care units (ICU) and may cause musculoskeletal and neurological deficits following intubation and mechanical ventilation. The aim of this study was to quantify and describe the presence of shoulder pain in patients released from hospitals after suffering COVID-19. Patients with positive Apley tests were sent to a physiatrist for a clinical evaluation, ultrasound and electromyography (EMG). This evaluation was completed with a pain scale, joint range and shoulder muscle strength evaluations. Of the one-hundred-sixteen patients, seventy eight entered the respiratory rehabilitation program. Twenty patients were sent to the multidisciplinary shoulder team for positive Apley scratch tests. Of these twenty patients, one had only an EMG, ten had only ultrasounds, seven had an EMG and ultrasound and two did not need complementary tests. The twenty patients were sent to the physical therapist, with all presenting pain and diminished joint range and muscle strength in the affected shoulder. In this context, shoulder pain could be associated with the prone position in the ICU. We suggest time control and position change for patients on mechanical ventilation in a prone position with COVID-19.


Subject(s)
COVID-19 , Respiration, Artificial , Humans , Respiration, Artificial/adverse effects , SARS-CoV-2 , Shoulder Pain/epidemiology , Shoulder Pain/etiology , Survivors
20.
Ecology ; 102(4): e03283, 2021 04.
Article in English | MEDLINE | ID: mdl-33428769

ABSTRACT

Increasing human impact on the environment is causing drastic changes in disturbance regimes and how they prevail over time. Of increasing relevance is to further our understanding on biological responses to pulse disturbances (short duration) and how they interact with other ongoing press disturbances (constantly present). Because the temporal and spatial contexts of single experiments often limit our ability to generalize results across space and time, we conducted a modularized mesocosm experiment replicated in space (five lakes along a latitudinal gradient in Scandinavia) and time (two seasons, spring and summer) to generate general predictions on how the functioning and composition of multitrophic plankton communities (zoo-, phyto- and bacterioplankton) respond to pulse disturbances acting either in isolation or combined with press disturbances. As pulse disturbance, we used short-term changes in fish presence, and as press disturbance, we addressed the ongoing reduction in light availability caused by increased cloudiness and lake browning in many boreal and subarctic lakes. First, our results show that the top-down pulse disturbance had the strongest effects on both functioning and composition of the three trophic levels across sites and seasons, with signs for interactive impacts with the bottom-up press disturbance on phytoplankton communities. Second, community composition responses to disturbances were highly divergent between lakes and seasons: temporal accumulated community turnover of the same trophic level either increased (destabilization) or decreased (stabilization) in response to the disturbances compared to control conditions. Third, we found functional recovery from the pulse disturbances to be frequent at the end of most experiments. In a broader context, these results demonstrate that top-down, pulse disturbances, either alone or with additional constant stress upon primary producers caused by bottom-up disturbances, can induce profound but often functionally reversible changes across multiple trophic levels, which are strongly linked to spatial and temporal context dependencies. Furthermore, the identified dichotomy of disturbance effects on the turnover in community composition demonstrates the potential of disturbances to either stabilize or destabilize biodiversity patterns over time across a wide range of environmental conditions.


Subject(s)
Food Chain , Lakes , Animals , Biodiversity , Ecosystem , Humans , Phytoplankton , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL