Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Pharm ; 19(12): 4665-4674, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36413426

ABSTRACT

In this study, we focus on investigating the therapeutic effects of camptothesome on treating metastatic triple-negative breast cancer (TNBC). We elucidate that camptothesome elicited stronger immunogenic cell death (ICD) compared to free camptothecin (CPT) and Onivyde in 4T1 TNBC cells. In addition, camptothesome is mainly internalized by the 4T1 and MDA-MB-231 cells through clathrin-mediated endocytosis based on the results of flow cytometry. Through real-time Lago optical imaging, camptothesome shows excellent tumor-targeting efficiency in orthotopic TNBC tumors. We demonstrate that camptothesome can upregulate programmed death-ligand 1 (PD-L1) in 4T1 tumors in an interferon gamma (IFN-γ)-dependent manner. Furthermore, the anti-TNBC efficacy studies reveal that camptothesome is superior to Onivyde and markedly potentiates PD-L1 immune checkpoint blockade therapy with complete lung metastasis remission in an orthotopic 4T1-Luc2 tumor model. This combination therapy eliciting robust cytotoxic T lymphocytes (CTL) response via boosting tumor-infiltrating cluster of differentiation 8 (CD8), calreticulin (CRT), high mobility group box 1 protein (HMGB-1), low-density lipoprotein receptor-related protein 1 (LRP1), IFN-γ, and granzyme B. Our work corroborates the promise of camptothesome in favorably modulating tumor immune microenvironment via inducing ICD to fortify the PD-L1 checkpoint blockade therapy for improved treatment of intractable TNBC.


Subject(s)
Immune Checkpoint Inhibitors , Triple Negative Breast Neoplasms , Humans , B7-H1 Antigen , Triple Negative Breast Neoplasms/drug therapy , Immunotherapy , Interferon-gamma , Irinotecan , Tumor Microenvironment
2.
Expert Opin Drug Deliv ; 20(4): 523-540, 2023 04.
Article in English | MEDLINE | ID: mdl-37017558

ABSTRACT

INTRODUCTION: Despite gene therapy is ideal for genetic abnormality-related diseases, the easy degradation, poor targeting, and inefficiency in entering targeted cells are plaguing the effective delivery of gene therapy. Viral and non-viral vectors have been used for delivering gene therapeutics in vivo by safeguarding nucleic acid agents to target cells and to reach the specific intracellular location. A variety of nanotechnology-enabled safe and efficient systems have been successfully developed to improve the targeting ability for effective therapeutic delivery of genetic drugs. AREAS COVERED: In this review, we outline the multiple biological barriers associated with gene delivery process, and highlight recent advances to gene therapy strategy in vivo, including gene correction, gene silencing, gene activation and genome editing. We point out current developments and challenges exist of non-viral and viral vector systems in association with chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION: This review focuses on the opportunities and challenges to various gene therapy strategy, with specific emphasis on overcoming the challenges through the development of biocompatibility and smart gene vectors for potential clinical application.


Subject(s)
Gene Transfer Techniques , Neoplasms , Humans , Genetic Therapy , Neoplasms/genetics , Neoplasms/therapy , Gene Editing , Genetic Vectors , Nanotechnology
3.
Article in English | MEDLINE | ID: mdl-37248794

ABSTRACT

Neurodegenerative diseases are posing pressing health issues due to the high prevalence among aging populations in the 21st century. They are evidenced by the progressive loss of neuronal function, often associated with neuronal necrosis and many related devastating complications. Nevertheless, effective therapeutical strategies to treat neurodegenerative diseases remain a tremendous challenge due to the multisystemic nature and limited drug delivery to the central nervous system. As a result, there is a pressing need to develop effective alternative therapeutics to manage the progression of neurodegenerative diseases. By utilizing the functional reconstructive materials and technologies with specific targeting ability at the nanoscale level, nanotechnology-empowered medicines can transform the therapeutic paradigms of neurodegenerative diseases with minimal systemic side effects. This review outlines the current applications and progresses of the nanotechnology-enabled drug delivery systems to enhance the therapeutic efficacy in treating neurodegenerative diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
Nanoparticles , Neurodegenerative Diseases , Humans , Blood-Brain Barrier , Neurodegenerative Diseases/drug therapy , Drug Delivery Systems , Nanotechnology , Nanomedicine
4.
Nat Commun ; 14(1): 7235, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945606

ABSTRACT

Epacadostat (EPA), the most advanced IDO1 inhibitor, in combination with PD-1 checkpoint inhibitor, has failed in a recent Phase III clinical trial for treating metastatic melanoma. Here we report an EPA nanovesicle therapeutic platform (Epacasome) based on chemically attaching EPA to sphingomyelin via an oxime-ester bond highly responsive to hydrolase cleavage. Via clathrin-mediated endocytosis, Epacasome displays higher cellular uptake and enhances IDO1 inhibition and T cell proliferation compared to free EPA. Epacasome shows improved pharmacokinetics and tumour accumulation with efficient intratumoural drug release and deep tumour penetration. Additionally, it outperforms free EPA for anticancer efficacy, potentiating PD-1 blockade with boosted cytotoxic T lymphocytes (CTLs) and reduced regulatory T cells and myeloid-derived suppressor cells responses in a B16-F10 melanoma model in female mice. By co-encapsulating immunogenic dacarbazine, Epacasome further enhances anti-tumor effects and immune responses through the upregulation of NKG2D-mediated CTLs and natural killer cells responses particularly when combined with the PD-1 inhibitor in the late-stage metastatic B16-F10-Luc2 model in female mice. Furthermore, this combination prevents tumour recurrence and prolongs mouse survival in a clinically relevant, post-surgical melanoma model in female mice. Epacasome demonstrates potential to synergize with PD-1 blockade for improved response to melanoma immunotherapy.


Subject(s)
Melanoma, Experimental , Sphingomyelins , Female , Mice , Animals , Programmed Cell Death 1 Receptor , Melanoma, Experimental/drug therapy , Oximes , Lymphocyte Activation , Immunotherapy
SELECTION OF CITATIONS
SEARCH DETAIL