Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Br J Cancer ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39322687

ABSTRACT

BACKGROUND: Mutations of the PIK3CA/AKT/mTOR axis are common events in metastatic breast cancers (MBCs). This study was designed to evaluate the extent to which genetic alterations of the PIK3CA/AKT/mTOR can predict protein activation of this signalling axis in MBCs. METHODS: Molecular profiles were generated by CLIA-certified laboratories from a real-world evidence cohort of 171 MBC patients. Genetic alterations of the PIK3CA pathway were measured using next-generation sequencing. Activation levels of AKT and downstream signalling molecules were quantified using two orthogonal proteomic methods. Protein activity was correlated with underlying genomic profiles and response to CDK4/6 inhibition in combination with endocrine treatment (ET). RESULTS: Oncogenic alterations of the PIK3CA/AKT/PTEN pathway were identified in 49.7% of cases. Genomic profiles emerged as poor predictors of protein activity (AUC:0.69), and AKT phosphorylation levels mimicked those of mutant lesions in 76.9% of wild-type tumours. High phosphorylation levels of the PI3K/AKT/mTOR downstream target p70S6 Kinase (T389) were associated with shorter PFS in patients treated with CDK4/6 inhibitors in combination with ET (HR:4.18 95%CI:1.19-14.63); this association was not seen when patients were classified by mutational status. CONCLUSIONS: Phosphoprotein-based measurements of drug targets and downstream substrates should be captured along with genomic information to identify MBCs driven by the PI3K/AKT/mTOR signalling.

2.
Clin Proteomics ; 21(1): 24, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509475

ABSTRACT

Metastatic pancreatic adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States, with a 5-year survival rate of only 11%, necessitating identification of novel treatment paradigms. Tumor tissue specimens from patients with PDAC, breast cancer, and other solid tumor malignancies were collected and tumor cells were enriched using laser microdissection (LMD). Reverse phase protein array (RPPA) analysis was performed on enriched tumor cell lysates to quantify a 32-protein/phosphoprotein biomarker panel comprising known anticancer drug targets and/or cancer-related total and phosphorylated proteins, including HER2Total, HER2Y1248, and HER3Y1289. RPPA analysis revealed significant levels of HER2Total in PDAC patients at abundances comparable to HER2-positive (IHC 3+) and HER2-low (IHC 1+ /2+ , FISH-) breast cancer tissues, for which HER2 screening is routinely performed. These data support a critical unmet need for routine clinical evaluation of HER2 expression in PDAC patients and examination of the utility of HER2-directed antibody-drug conjugates in these patients.

3.
Bioessays ; 35(12): 1025-34, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24185813

ABSTRACT

It was, until recently, accepted that the two classes of acetylcholine (ACh) receptors are distinct in an important sense: muscarinic ACh receptors signal via heterotrimeric GTP binding proteins (G proteins), whereas nicotinic ACh receptors (nAChRs) open to allow flux of Na+, Ca2+, and K+ ions into the cell after activation. Here we present evidence of direct coupling between G proteins and nAChRs in neurons. Based on proteomic, biophysical, and functional evidence, we hypothesize that binding to G proteins modulates the activity and signaling of nAChRs in cells. It is important to note that while this hypothesis is new for the nAChR, it is consistent with known interactions between G proteins and structurally related ligand-gated ion channels. Therefore, it underscores an evolutionarily conserved metabotropic mechanism of G protein signaling via nAChR channels.


Subject(s)
GTP-Binding Proteins/metabolism , Receptors, Nicotinic/metabolism , Animals , GTP-Binding Proteins/genetics , Humans , Protein Binding , Receptors, Nicotinic/genetics , Signal Transduction/genetics , Signal Transduction/physiology
4.
Clin Cancer Res ; 29(6): 1031-1039, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36548343

ABSTRACT

PURPOSE: To evaluate sitravatinib, an inhibitor of multiple receptor tyrosine kinases (RTK), for the treatment of well-differentiated/dedifferentiated liposarcoma (WD/DD LPS). PATIENTS AND METHODS: This multicenter, open-label, Phase II trial enrolled patients with advanced WD/DD LPS who had received at least one prior systemic regimen and had progression within 12 weeks of enrollment. Patients received sitravatinib 150 mg (later amended to 120 mg) orally daily. A Simon two-stage design was used to evaluate for an improvement in the primary endpoint, progression-free rate at 12 weeks (PFR12), from 20% to 40%. Secondary endpoints included antitumor activity and safety. A subset of patients underwent paired biopsies analyzed using reverse-phase protein array. RESULTS: Twenty-nine patients enrolled. Median age was 62 years and 31% had received 3 or more prior lines. Most patients (93%) had DDLPS or mixed WD/DD LPS. Overall, 12 of 29 patients (41%) were alive and progression-free at 12 weeks and the study met the primary endpoint. There were no confirmed responses. Median progression-free survival was 11.7 weeks [95% confidence interval (CI): 5.9-35.9] and median overall survival was 31.7 weeks (95% CI: 18.1-90.1). The most common treatment-related adverse events were diarrhea (59%), hypertension (52%), hoarseness (41%), mucositis (31%), and nausea (31%). Baseline expression of phospho-RTKs was not significantly different between patients with and without clinical benefit from sitravatinib, but the number of samples was small. CONCLUSIONS: Sitravatinib provided a PFR12 of 41% and meaningful disease control in a subset of patients with advanced, progressive WD/DD LPS.


Subject(s)
Lipopolysaccharides , Liposarcoma , Humans , Middle Aged , Lipopolysaccharides/therapeutic use , Pyridines/therapeutic use , Anilides/therapeutic use , Liposarcoma/drug therapy , Liposarcoma/pathology
5.
Methods Mol Biol ; 1606: 115-132, 2017.
Article in English | MEDLINE | ID: mdl-28501997

ABSTRACT

Laser capture microdissection (LCM) is a technique that allows procurement of an enriched cell population from a heterogeneous tissue sample under direct microscopic visualization. Fundamentally, laser capture microdissection consists of three main steps: (1) visualizing the desired cell population by microscopy, (2) melting a thermolabile polymer onto the desired cell populations using infrared laser energy to form a polymer-cell composite (capture method) or photovolatizing a region of tissue using ultraviolet laser energy (cutting method), and (3) removing the desired cell population from the heterogeneous tissue. In this chapter, we discuss the infrared capture method only. LCM technology is compatible with a wide range of downstream applications such as mass spectrometry, DNA genotyping and RNA transcript profiling, cDNA library generation, proteomics discovery, and signal pathway mapping. This chapter profiles the ArcturusXT™ laser capture microdissection instrument, using isolation of specific cortical lamina from nonhuman primate brain regions, and sample preparation methods for downstream proteomic applications.


Subject(s)
Brain/anatomy & histology , Laser Capture Microdissection/methods , Primates/anatomy & histology , Proteomics/methods , Specimen Handling/methods , Animals , Brain/metabolism , Laser Capture Microdissection/instrumentation , Primates/metabolism
6.
Front Pharmacol ; 4: 171, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24432003

ABSTRACT

Receptor function is dependent on interaction with various intracellular proteins that ensure the localization and signaling of the receptor. While a number of approaches have been optimized for the isolation, purification, and proteomic characterization of receptor-protein interaction networks (interactomes) in cells, the capture of receptor interactomes and their dynamic properties remains a challenge. In particular, the study of interactome components that bind to the receptor with low affinity or can rapidly dissociate from the macromolecular complex is difficult. Here we describe how chemical crosslinking (CC) can aid in the isolation and proteomic analysis of receptor-protein interactions. The addition of CC to standard affinity purification and mass spectrometry protocols boosts the power of protein capture within the proteomic assay and enables the identification of specific binding partners under various cellular and receptor states. The utility of CC in receptor interactome studies is highlighted for the nicotinic acetylcholine receptor as well as several other receptor types. A better understanding of receptors and their interactions with proteins spearheads molecular biology, informs an integral part of bench medicine which helps in drug development, drug action, and understanding the pathophysiology of disease.

SELECTION OF CITATIONS
SEARCH DETAIL