Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cell ; 184(7): 1914-1928.e19, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33730596

ABSTRACT

Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.


Subject(s)
Embryo, Nonmammalian/physiology , Embryonic Development , Animals , Blastoderm/cytology , Blastoderm/physiology , Cadherins/antagonists & inhibitors , Cadherins/genetics , Cadherins/metabolism , Cell Adhesion , Embryo, Nonmammalian/cytology , Morpholinos/metabolism , Rheology , Viscosity , Zebrafish/growth & development
2.
Nature ; 607(7919): 548-554, 2022 07.
Article in English | MEDLINE | ID: mdl-35831497

ABSTRACT

The morphology and functionality of the epithelial lining differ along the intestinal tract, but tissue renewal at all sites is driven by stem cells at the base of crypts1-3. Whether stem cell numbers and behaviour vary at different sites is unknown. Here we show using intravital microscopy that, despite similarities in the number and distribution of proliferative cells with an Lgr5 signature in mice, small intestinal crypts contain twice as many effective stem cells as large intestinal crypts. We find that, although passively displaced by a conveyor-belt-like upward movement, small intestinal cells positioned away from the crypt base can function as long-term effective stem cells owing to Wnt-dependent retrograde cellular movement. By contrast, the near absence of retrograde movement in the large intestine restricts cell repositioning, leading to a reduction in effective stem cell number. Moreover, after suppression of the retrograde movement in the small intestine, the number of effective stem cells is reduced, and the rate of monoclonal conversion of crypts is accelerated. Together, these results show that the number of effective stem cells is determined by active retrograde movement, revealing a new channel of stem cell regulation that can be experimentally and pharmacologically manipulated.


Subject(s)
Cell Count , Cell Movement , Intestines , Stem Cells , Animals , Intestinal Mucosa/cytology , Intestine, Small/cytology , Intestines/cytology , Mice , Receptors, G-Protein-Coupled , Stem Cells/cytology , Wnt Proteins
3.
Semin Cell Dev Biol ; 150-151: 58-65, 2023 12.
Article in English | MEDLINE | ID: mdl-36470715

ABSTRACT

Homeostatic balance in the intestinal epithelium relies on a fast cellular turnover, which is coordinated by an intricate interplay between biochemical signalling, mechanical forces and organ geometry. We review recent modelling approaches that have been developed to understand different facets of this remarkable homeostatic equilibrium. Existing models offer different, albeit complementary, perspectives on the problem. First, biomechanical models aim to explain the local and global mechanical stresses driving cell renewal as well as tissue shape maintenance. Second, compartmental models provide insights into the conditions necessary to keep a constant flow of cells with well-defined ratios of cell types, and how perturbations can lead to an unbalance of relative compartment sizes. A third family of models address, at the cellular level, the nature and regulation of stem fate choices that are necessary to fuel cellular turnover. We also review how these different approaches are starting to be integrated together across scales, to provide quantitative predictions and new conceptual frameworks to think about the dynamics of cell renewal in complex tissues.


Subject(s)
Signal Transduction , Stem Cells , Animals , Stem Cells/metabolism , Intestinal Mucosa , Homeostasis , Mammals
4.
Proc Natl Acad Sci U S A ; 117(29): 16969-16975, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32611816

ABSTRACT

Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common ("universal") functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.


Subject(s)
Cell Lineage , Cell Self Renewal , Stem Cell Niche , Animals , Cell Survival , Female , Homeostasis , Intestines/cytology , Intestines/growth & development , Kidney/cytology , Kidney/growth & development , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Mice , Models, Theoretical , Signal-To-Noise Ratio , Stem Cells/cytology , Stem Cells/physiology
5.
Entropy (Basel) ; 25(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36832717

ABSTRACT

The existence of the typical set is key for data compression strategies and for the emergence of robust statistical observables in macroscopic physical systems. Standard approaches derive its existence from a restricted set of dynamical constraints. However, given its central role underlying the emergence of stable, almost deterministic statistical patterns, a question arises whether typical sets exist in much more general scenarios. We demonstrate here that the typical set can be defined and characterized from general forms of entropy for a much wider class of stochastic processes than was previously thought. This includes processes showing arbitrary path dependence, long range correlations or dynamic sampling spaces, suggesting that typicality is a generic property of stochastic processes, regardless of their complexity. We argue that the potential emergence of robust properties in complex stochastic systems provided by the existence of typical sets has special relevance to biological systems.

6.
Proc Natl Acad Sci U S A ; 112(17): 5348-53, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25870294

ABSTRACT

History-dependent processes are ubiquitous in natural and social systems. Many such stochastic processes, especially those that are associated with complex systems, become more constrained as they unfold, meaning that their sample space, or their set of possible outcomes, reduces as they age. We demonstrate that these sample-space-reducing (SSR) processes necessarily lead to Zipf's law in the rank distributions of their outcomes. We show that by adding noise to SSR processes the corresponding rank distributions remain exact power laws, p(x) ~ x(-λ), where the exponent directly corresponds to the mixing ratio of the SSR process and noise. This allows us to give a precise meaning to the scaling exponent in terms of the degree to which a given process reduces its sample space as it unfolds. Noisy SSR processes further allow us to explain a wide range of scaling exponents in frequency distributions ranging from α = 2 to ∞. We discuss several applications showing how SSR processes can be used to understand Zipf's law in word frequencies, and how they are related to diffusion processes in directed networks, or aging processes such as in fragmentation processes. SSR processes provide a new alternative to understand the origin of scaling in complex systems without the recourse to multiplicative, preferential, or self-organized critical processes.

7.
Proc Natl Acad Sci U S A ; 111(2): 833-8, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24379387

ABSTRACT

The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures--search information and path transitivity--which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways.


Subject(s)
Brain/physiology , Cell Communication/physiology , Connectome , Models, Neurological , Nerve Net/physiology , Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging , Female , Humans , Linear Models , Male , Nerve Net/anatomy & histology
8.
Proc Natl Acad Sci U S A ; 110(33): 13316-21, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23898177

ABSTRACT

Hierarchy seems to pervade complexity in both living and artificial systems. Despite its relevance, no general theory that captures all features of hierarchy and its origins has been proposed yet. Here we present a formal approach resulting from the convergence of theoretical morphology and network theory that allows constructing a 3D morphospace of hierarchies and hence comparing the hierarchical organization of ecological, cellular, technological, and social networks. Embedded within large voids in the morphospace of all possible hierarchies, four major groups are identified. Two of them match the expected from random networks with similar connectivity, thus suggesting that nonadaptive factors are at work. Ecological and gene networks define the other two, indicating that their topological order is the result of functional constraints. These results are consistent with an exploration of the morphospace, using in silico evolved networks.


Subject(s)
Biological Evolution , Cell Physiological Phenomena , Ecosystem , Gene Regulatory Networks , Models, Theoretical , Social Support
9.
Chaos ; 21(1): 016108, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21456850

ABSTRACT

In this paper we explore the concept of hierarchy as a quantifiable descriptor of ordered structures, departing from the definition of three conditions to be satisfied for a hierarchical structure: order, predictability, and pyramidal structure. According to these principles, we define a hierarchical index taking concepts from graph and information theory. This estimator allows to quantify the hierarchical character of any system susceptible to be abstracted in a feedforward causal graph, i.e., a directed acyclic graph defined in a single connected structure. Our hierarchical index is a balance between this predictability and pyramidal condition by the definition of two entropies: one attending the onward flow and the other for the backward reversion. We show how this index allows to identify hierarchical, antihierarchical, and nonhierarchical structures. Our formalism reveals that departing from the defined conditions for a hierarchical structure, feedforward trees and the inverted tree graphs emerge as the only causal structures of maximal hierarchical and antihierarchical systems respectively. Conversely, null values of the hierarchical index are attributed to a number of different configuration networks; from linear chains, due to their lack of pyramid structure, to full-connected feedforward graphs where the diversity of onward pathways is canceled by the uncertainty (lack of predictability) when going backward. Some illustrative examples are provided for the distinction among these three types of hierarchical causal graphs.

10.
Cogn Process ; 12(2): 183-96, 2011 May.
Article in English | MEDLINE | ID: mdl-20938799

ABSTRACT

Semantic memory is the subsystem of human memory that stores knowledge of concepts or meanings, as opposed to life-specific experiences. How humans organize semantic information remains poorly understood. In an effort to better understand this issue, we conducted a verbal fluency experiment on 200 participants with the aim of inferring and representing the conceptual storage structure of the natural category of animals as a network. This was done by formulating a statistical framework for co-occurring concepts that aims to infer significant concept-concept associations and represent them as a graph. The resulting network was analyzed and enriched by means of a missing links recovery criterion based on modularity. Both network models were compared to a thresholded co-occurrence approach. They were evaluated using a random subset of verbal fluency tests and comparing the network outcomes (linked pairs are clustering transitions and disconnected pairs are switching transitions) to the outcomes of two expert human raters. Results show that the network models proposed in this study overcome a thresholded co-occurrence approach, and their outcomes are in high agreement with human evaluations. Finally, the interplay between conceptual structure and retrieval mechanisms is discussed.


Subject(s)
Concept Formation/physiology , Memory/physiology , Semantics , Adolescent , Adult , Female , Humans , Male , Middle Aged , Models, Psychological , Neuropsychological Tests , Verbal Behavior/physiology
11.
Netw Neurosci ; 5(3): 666-688, 2021.
Article in English | MEDLINE | ID: mdl-34746622

ABSTRACT

The quantification of human brain functional (re)configurations across varying cognitive demands remains an unresolved topic. We propose that such functional configurations may be categorized into three different types: (a) network configural breadth, (b) task-to task transitional reconfiguration, and (c) within-task reconfiguration. Such functional reconfigurations are rather subtle at the whole-brain level. Hence, we propose a mesoscopic framework focused on functional networks (FNs) or communities to quantify functional (re)configurations. To do so, we introduce a 2D network morphospace that relies on two novel mesoscopic metrics, trapping efficiency (TE) and exit entropy (EE), which capture topology and integration of information within and between a reference set of FNs. We use this framework to quantify the network configural breadth across different tasks. We show that the metrics defining this morphospace can differentiate FNs, cognitive tasks, and subjects. We also show that network configural breadth significantly predicts behavioral measures, such as episodic memory, verbal episodic memory, fluid intelligence, and general intelligence. In essence, we put forth a framework to explore the cognitive space in a comprehensive manner, for each individual separately, and at different levels of granularity. This tool that can also quantify the FN reconfigurations that result from the brain switching between mental states.

12.
J R Soc Interface ; 17(162): 20190623, 2020 01.
Article in English | MEDLINE | ID: mdl-31964273

ABSTRACT

In many real-world systems, information can be transmitted in two qualitatively different ways: by copying or by transformation. Copying occurs when messages are transmitted without modification, e.g. when an offspring receives an unaltered copy of a gene from its parent. Transformation occurs when messages are modified systematically during transmission, e.g. when mutational biases occur during genetic replication. Standard information-theoretic measures do not distinguish these two modes of information transfer, although they may reflect different mechanisms and have different functional consequences. Starting from a few simple axioms, we derive a decomposition of mutual information into the information transmitted by copying versus the information transmitted by transformation. We begin with a decomposition that applies when the source and destination of the channel have the same set of messages and a notion of message identity exists. We then generalize our decomposition to other kinds of channels, which can involve different source and destination sets and broader notions of similarity. In addition, we show that copy information can be interpreted as the minimal work needed by a physical copying process, which is relevant for understanding the physics of replication. We use the proposed decomposition to explore a model of amino acid substitution rates. Our results apply to any system in which the fidelity of copying, rather than simple predictability, is of critical relevance.


Subject(s)
Copying Processes
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 066106, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19658563

ABSTRACT

Optimization has been shown to be a driving force for the evolution of some biological structures, such as neural maps in the brain or transport networks. Here we show that insect networks also display characteristic traits of optimality. By using a graph representation of the chamber organization of termite nests and a disordered lattice model, it is found that these spatial nests are close to a percolation threshold. This suggests that termites build efficient systems of galleries spanning most of the nest volume at low cost. The evolutionary consequences are outlined.

14.
Life (Basel) ; 9(1)2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30650642

ABSTRACT

Understanding the thermodynamics of the duplication process is a fundamental step towards a comprehensive physical theory of biological systems. However, the immense complexity of real cells obscures the fundamental tensions between energy gradients and entropic contributions that underlie duplication. The study of synthetic, feasible systems reproducing part of the key ingredients of living entities but overcoming major sources of biological complexity is of great relevance to deepen the comprehension of the fundamental thermodynamic processes underlying life and its prevalence. In this paper an abstract-yet realistic-synthetic system made of small synthetic protocell aggregates is studied in detail. A fundamental relation between free energy and entropic gradients is derived for a general, non-equilibrium scenario, setting the thermodynamic conditions for the occurrence and prevalence of duplication phenomena. This relation sets explicitly how the energy gradients invested in creating and maintaining structural-and eventually, functional-elements of the system must always compensate the entropic gradients, whose contributions come from changes in the translational, configurational, and macrostate entropies, as well as from dissipation due to irreversible transitions. Work/energy relations are also derived, defining lower bounds on the energy required for the duplication event to take place. A specific example including real ternary emulsions is provided in order to grasp the orders of magnitude involved in the problem. It is found that the minimal work invested over the system to trigger a duplication event is around ~ 10 - 13 J , which results, in the case of duplication of all the vesicles contained in a liter of emulsion, in an amount of energy around ~ 1 kJ . Without aiming to describe a truly biological process of duplication, this theoretical contribution seeks to explicitly define and identify the key actors that participate in it.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 2): 026102, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18352085

ABSTRACT

The power grid defines one of the most important technological networks of our times and sustains our complex society. It has evolved for more than a century into an extremely huge and seemingly robust and well understood system. But it becomes extremely fragile as well, when unexpected, usually minimal, failures turn into unknown dynamical behaviours leading, for example, to sudden and massive blackouts. Here we explore the fragility of the European power grid under the effect of selective node removal. A mean field analysis of fragility against attacks is presented together with the observed patterns. Deviations from the theoretical conditions for network percolation (and fragmentation) under attacks are analysed and correlated with non topological reliability measures.

16.
J R Soc Interface ; 15(149): 20180395, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30958235

ABSTRACT

A major problem for evolutionary theory is understanding the so-called open-ended nature of evolutionary change, from its definition to its origins. Open-ended evolution (OEE) refers to the unbounded increase in complexity that seems to characterize evolution on multiple scales. This property seems to be a characteristic feature of biological and technological evolution and is strongly tied to the generative potential associated with combinatorics, which allows the system to grow and expand their available state spaces. Interestingly, many complex systems presumably displaying OEE, from language to proteins, share a common statistical property: the presence of Zipf's Law. Given an inventory of basic items (such as words or protein domains) required to build more complex structures (sentences or proteins) Zipf's Law tells us that most of these elements are rare whereas a few of them are extremely common. Using algorithmic information theory, in this paper we provide a fundamental definition for open-endedness, which can be understood as postulates. Its statistical counterpart, based on standard Shannon information theory, has the structure of a variational problem which is shown to lead to Zipf's Law as the expected consequence of an evolutionary process displaying OEE. We further explore the problem of information conservation through an OEE process and we conclude that statistical information (standard Shannon information) is not conserved, resulting in the paradoxical situation in which the increase of information content has the effect of erasing itself. We prove that this paradox is solved if we consider non-statistical forms of information. This last result implies that standard information theory may not be a suitable theoretical framework to explore the persistence and increase of the information content in OEE systems.


Subject(s)
Biological Evolution , Models, Biological
17.
Sci Rep ; 8(1): 10837, 2018 07 18.
Article in English | MEDLINE | ID: mdl-30022170

ABSTRACT

Sample space reducing (SSR) processes offer a simple analytical way to understand the origin and ubiquity of power-laws in many path-dependent complex systems. SRR processes show a wide range of applications that range from fragmentation processes, language formation to search and cascading processes. Here we argue that they also offer a natural framework to understand stationary distributions of generic driven non-equilibrium systems that are composed of a driving- and a relaxing process. We show that the statistics of driven non-equilibrium systems can be derived from the understanding of the nature of the underlying driving process. For constant driving rates exact power-laws emerge with exponents that are related to the driving rate. If driving rates become state-dependent, or if they vary across the life-span of the process, the functional form of the state-dependence determines the statistics. Constant driving rates lead to exact power-laws, a linear state-dependence function yields exponential or Gamma distributions, a quadratic function produces the normal distribution. Logarithmic and power-law state dependence leads to log-normal and stretched exponential distribution functions, respectively. Also Weibull, Gompertz and Tsallis-Pareto distributions arise naturally from simple state-dependent driving rates. We discuss a simple physical example of consecutive elastic collisions that exactly represents a SSR process.

18.
PLoS One ; 13(4): e0196807, 2018.
Article in English | MEDLINE | ID: mdl-29702685

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0170920.].

19.
Nat Ecol Evol ; 2(1): 94-99, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29158553

ABSTRACT

Mutualistic networks have been shown to involve complex patterns of interactions among animal and plant species, including a widespread presence of nestedness. The nested structure of these webs seems to be positively correlated with higher diversity and resilience. Moreover, these webs exhibit marked measurable structural patterns, including broad distributions of connectivity, strongly asymmetrical interactions and hierarchical organization. Hierarchical organization is an especially interesting property, since it is positively correlated with biodiversity and network resilience, thus suggesting potential selection processes favouring the observed web organization. However, here we show that all these structural quantitative patterns-and nestedness in particular-can be properly explained by means of a very simple dynamical model of speciation and divergence with no selection-driven coevolution of traits. The agreement between observed and modelled networks suggests that the patterns displayed by real mutualistic webs might actually represent evolutionary spandrels.


Subject(s)
Biological Evolution , Symbiosis , Models, Biological
20.
R Soc Open Sci ; 5(12): 181286, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30662738

ABSTRACT

The emergence of syntax during childhood is a remarkable example of how complex correlations unfold in nonlinear ways through development. In particular, rapid transitions seem to occur as children reach the age of two, which seems to separate a two-word, tree-like network of syntactic relations among words from the scale-free graphs associated with the adult, complex grammar. Here, we explore the evolution of syntax networks through language acquisition using the chromatic number, which captures the transition and provides a natural link to standard theories on syntactic structures. The data analysis is compared to a null model of network growth dynamics which is shown to display non-trivial and sensible differences. At a more general level, we observe that the chromatic classes define independent regions of the graph, and thus, can be interpreted as the footprints of incompatibility relations, somewhat as opposed to modularity considerations.

SELECTION OF CITATIONS
SEARCH DETAIL