Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Article in English | MEDLINE | ID: mdl-35917228

ABSTRACT

A Gram-negative, motile, rod-shaped marine bacterium, designated RKSG542T, was isolated from the sea sponge Verongula gigantea collected at a depth of 20 m off the west coast of San Salvador, The Bahamas. Phylogenetic analyses based on 16S rRNA gene and genome sequences place RKSG542T in a monophyletic clade with members of the genus Pseudovibrio. Strain RKSG542T shared <96.7 % 16S rRNA gene sequence similarity,<72.2 % average nucleotide identity,<66.7 % average amino acid identity, and <24.8 % digital DNA-DNA hybridization with type strains of the family Stappiaceae. Growth occurred at 22-37 °C (22-30 °C optimum), at pH 7-9 (pH 7 optimum), and with 0.5-5 % (w/v) NaCl (2 % optimum). The predominant fatty acids (>10 %) were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), C18 : 0 and C16 : 0, and the respiratory lipoquinone was Q-10. The polar lipid composition comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unknown aminolipids, six unknown phospholipids and four unknown lipids. The DNA G+C content of the genome sequence was 52.5 mol%. Based on the results of biochemical, phylogenetic and genomic analyses, RKSG542T (=TSD-76T=LMG 29867T) is presented here as the type strain of a novel species within the genus Pseudovibrio (family Stappiaceae, order Hyphomicrobiales, class Alphaproteobacteria), for which the name Pseudovibrio flavus sp. nov. is proposed.


Subject(s)
Porifera , Rhodobacteraceae , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
2.
Article in English | MEDLINE | ID: mdl-34228608

ABSTRACT

A Gram-stain-negative, strictly aerobic, motile bacterium, designated strain RKSG073T, was isolated from the sea sponge Aplysina fistularis, collected off the west coast of San Salvador, The Bahamas. Cells were curved-to-spiral rods with single, bipolar (amphitrichous) flagella, oxidase- and catalase-positive, non-nitrate-reducing and required salt for growth. RKSG073T grew optimally at 30-37 °C, pH 6-7, and with 2-3 % (w/v) NaCl. The predominant fatty acids of RKSG073T were summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and C16 : 0. Major isoprenoid quinones were identified as Q-10 and Q-9. Phylogenetic analyses of nearly complete 16S rRNA genes and genome sequences positioned strain RKSG073T in a clade with its closest relative Aestuariispira insulae AH-MY2T (92.1 % 16S rRNA gene sequence similarity), which subsequently clustered with Hwanghaeella grinnelliae Gri0909T, Marivibrio halodurans ZC80T and type species of the genera Kiloniella, Thalassospira and Terasakiella. The DNA G+C content calculated from the genome of RKSG073T was 42.2 mol%. On the basis of phylogenetic distinctiveness and polyphasic analysis, here we propose that RKSG073T (culture deposit numbers: ATCC collection = TSD-74T, BCCM collection = LMG 29869T) represents the type strain of a novel genus and species within the family Kiloniellaceae, order Rhodospirillales and class Alphaproteobacteria, for which the name Curvivirga aplysinae gen. nov., sp. nov. is proposed.


Subject(s)
Alphaproteobacteria/classification , Phylogeny , Porifera/microbiology , Alphaproteobacteria/isolation & purification , Animals , Bacterial Typing Techniques , Bahamas , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
3.
Int J Syst Evol Microbiol ; 70(4): 2766-2781, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32238229

ABSTRACT

Two Gram-stain-negative, strictly aerobic, marine bacteria, designated as strains RKSG066T and RKSG123T, were isolated from a sponge Aplysina fistularis collected at a depth of 15 m off the west coast of San Salvador, The Bahamas. Investigation of nearly full-length 16S rRNA gene and whole genome-based phylogenies revealed that both strains belong to the order Cytophagales within the class Cytophagia and phylum Bacteroidetes. Strain RKSG066T formed a monophyletic clade with described members of the genus Fulvivirga, while strain RKSG123T formed a well-supported paraphyletic branch apart from this and other related genera within the family Flammeovirgaceae. For both RKSG066T and RKSG123T, optimal growth parameters were 30-37 °C, pH 7-8 and 2-3 % (w/v) NaCl; cells were catalase- and oxidase-positive, and flexirubin-type pigments were absent. The predominant fatty acids were iso-C15 : 0, C16 : 0, C18 : 0, iso-C17 : 0 3-OH, C16 : 1 ω5c, iso-C15 : 0 3-OH, C18 : 1 ω9c and iso-C15 : 1 G for RKSG066T, and iso-C17 : 0 3-OH, C16 : 1 ω5c, iso-C15 : 0, C16 : 0 3-OH and summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B) for RKSG123T. Menaquinone-7 was the major respiratory quinone for both strains. The DNA G+C contents of RKSG066T and RKSG123T were 39.5 and 36.7 mol%, respectively. On the basis of phylogenetic distinctiveness and polyphasic analysis, the type strain RKSG066T (=TSD-73T=LMG 29870T) is proposed to represent a novel species of the genus Fulvivirga, for which the name Fulvivirga aurantia sp. nov. is proposed. The type strain RKSG123T (=TSD-75T=LMG 30075T) is proposed to represent the type species of a novel genus and species with the proposed name Xanthovirga aplysinae gen. nov., sp. nov. Additionally, the genus Fulvivirga is emended to include strains of orange-pigmented colonies that contain the predominant cellular fatty acids C16 : 0, C18 : 0, C16  :  1 ω5c and C18  :  1 ω9c.


Subject(s)
Bacteroidetes/classification , Phylogeny , Porifera/microbiology , Animals , Bacterial Typing Techniques , Bacteroidetes/isolation & purification , Bahamas , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
4.
J Org Chem ; 85(10): 6450-6462, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32363877

ABSTRACT

Antitubercular agent levesquamide is a new polyketide-nonribosomal peptide (PK-NRP) hybrid marine natural product isolated from Streptomyces sp. RKND-216. The structure contains a rare isothiazolinone moiety which has only been reported in collismycin SN. Structure elucidation by NMR spectroscopy was a significant challenge due to a deficiency of protons in this aromatic moiety. Therefore, the genome of Streptomyces sp. RKND-216 was sequenced to identify the levesquamide biosynthetic gene cluster (BGC). Analysis of the BGC provided structural insights and guided stable-isotope labeling experiments, which led to the assignment of the fused pyridine-isothiazolinone moiety. The BGC and the labeling experiments provide further insights into the biosynthetic origin of isothiazolinones. Levesquamide exhibited antimicrobial activity in the microplate alamarBlue assay (MABA) and low oxygen recovery assay (LORA) against Mycobacterium tuberculosis H37Rv with minimum inhibitory concentration (MIC) values of 9.65 and 22.28 µM, respectively. Similar activity was exhibited against rifampicin- and isoniazid-resistant M. tuberculosis strains with MIC values of 9.46 and 9.90 µM, respectively. This result suggests levesquamide has a different mode of action against M. tuberculosis compared to the two first-line antitubercular drugs rifampicin and isoniazid. Furthermore, levesquamide shows no cytotoxicity against the Vero cell line, suggesting it may have a useful therapeutic window.


Subject(s)
Biological Products , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Biological Products/pharmacology , Microbial Sensitivity Tests , Thiazoles/pharmacology
5.
J Nat Prod ; 83(9): 2696-2705, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32869646

ABSTRACT

Co-cultivation has been used as a promising tool to turn on or up-regulate cryptic biosynthetic pathways for microbial natural product discovery. Recently, a modified culturing strategy similar to co-cultivation was investigated, where heat-killed inducer cultures were supplemented to the culture medium of producer fermentations to induce cryptic pathways. In the present study, the repeatability and effectiveness of both methods in turning on cryptic biosynthetic pathways were unbiasedly assessed using UHPLC-HRESIMS-based metabolomics analysis. Both induction methods had good repeatability, and they resulted in very different induced metabolites from the tested producers. Co-cultivation generated more induced mass features than the heat-killed inducer cultures, while both methods resulted in the induction of mass features not observed using the other induction method. As examples, pathways leading to two new natural products, N-carbamoyl-2-hydroxy-3-methoxybenzamide (1) and carbazoquinocin G (5), were induced and up-regulated through co-culturing a producer Streptomyces sp. RKND-216 with inducers Alteromonas sp. RKMC-009 and M. smegmatis ATCC 120515, respectively.


Subject(s)
Metabolic Networks and Pathways , Metabolome , Alteromonas/metabolism , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Biological Products , Cell Line, Tumor , Chromatography, High Pressure Liquid , Coculture Techniques , Drug Discovery , Hot Temperature , Humans , Microbial Sensitivity Tests , Mycobacterium smegmatis/drug effects , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization , Sterilization , Streptomyces/metabolism
6.
Mar Drugs ; 17(8)2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31344982

ABSTRACT

Advances in whole-genome sequencing of many fungal species has revealed the presence of numerous "silent" biosynthetic genes, highlighting their potential to produce a wide variety of natural products. These silent biosynthetic genes are regulated in part by their highly condensed chromatin structure, which can be modified to allow transcription in response to external stimuli. In this study, Asteromyces cruciatus was subjected to both epigenetic modification and osmotic stress to enhance the production of new natural products. This "cooperative induction" strategy led to the isolation and characterization of two new polyketides from a fermentation of A. cruciatus treated with suberoylanilide hydroxamic acid and sodium chloride. The metabolic profiles of the control and treated samples were assessed using ultra-high performance liquid chromatography high-resolution electrospray ionization mass spectrometry (UHPLC-HRESIMS) metabolomic analysis, highlighting the upregulation of two new polyketides, primarolides A and B. These compounds were purified using reversed-phase flash chromatography followed by high-performance liquid chromatography, and their planar structures were established using NMR spectroscopy.


Subject(s)
Aquatic Organisms/chemistry , Ascomycota/chemistry , Ascomycota/drug effects , Biological Products/chemistry , Hydroxamic Acids/pharmacology , Osmosis/physiology , Polyketides/chemistry , Ascomycota/physiology , Chromatography, High Pressure Liquid/methods , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Sodium Chloride/pharmacology
7.
Mar Drugs ; 17(6)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31212620

ABSTRACT

Terrosamycins A (1) and B (2), two polycyclic polyether natural products, were purified from the fermentation broth of Streptomyces sp. RKND004 isolated from Prince Edward Island sediment. The one strain-many compounds (OSMAC) approach coupled with UPLC-HRMS-based metabolomics screening led to the identification of these compounds. The structure of 1 was determined from analysis of NMR, HRMS, and X-ray diffraction data. NMR experiments performed on 2 revealed the presence of two methoxy groups replacing two hydroxy groups in 1. Like other polyether ionophores, 1 and 2 exhibited excellent antibiotic activity against Gram-positive pathogens. Interestingly, the terrosamycins also exhibited activity against two breast cancer cell lines.


Subject(s)
Ionophores/chemistry , Streptomyces/chemistry , Anti-Bacterial Agents/chemistry , Biological Products/chemistry , Fermentation/physiology , Magnetic Resonance Spectroscopy/methods , Microbial Sensitivity Tests/methods , Prince Edward Island , X-Ray Diffraction/methods
8.
Int J Syst Evol Microbiol ; 68(6): 2006-2014, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29688166

ABSTRACT

A Gram-stain-negative, strictly aerobic, motile, rod-shaped bacterium, designated strain RKSG058T, was isolated from the marine sponge Verongula gigantea, collected off the west coast of San Salvador, The Bahamas. Phylogenetic analyses based on 16S rRNA gene sequences revealed that RKSG058T formed a distinct lineage within the family Hahellaceae (order Oceanospirillales, class Gammaproteobacteria), and was most closely related to the genus Endozoicomonas, with sequence similarities to members of this genus ranging from 92.0 to 93.7 %. Optimal growth occurred at 30 °C, at pH 7 and in the presence of 2-3 % (w/v) NaCl. The predominant cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The major and minor respiratory quinones were Q-9 and Q-8, respectively. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified aminolipids, an unidentified phospholipid and five unidentified lipids. The DNA G+C content was 42.3 mol%. Biochemical, chemotaxonomic and phylogenetic analyses indicated that strain RKSG058T represents the first cultured isolate of a novel bacterial genus and species within the family Hahellaceae, for which the name Sansalvadorimonas verongulae gen. nov., sp. nov. is proposed. The type strain of Sansalvadorimonas verongulae is RKSG058T (=TSD-72T=LMG 29871T). An emended description of the genus Kistimonas is provided.


Subject(s)
Gammaproteobacteria/classification , Phylogeny , Porifera/microbiology , Animals , Bacterial Typing Techniques , Bahamas , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Phospholipids/chemistry , Quinones/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
9.
J Org Chem ; 83(4): 1876-1890, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29313335

ABSTRACT

Polyketide synthase (PKS) derived natural products are biosynthesized by head-to-tail addition of acetate and malonate extender units resulting in linear extended-polyketide chains. Despite the well-documented structural diversity associated with PKS-derived natural products, C-C chain branching deviating from the usual linear pattern is relatively rare. Herein, type-II PKS angucyclic natural products containing a hemiaminal functionality were identified and proposed as the parent of a series of C-C-branched analogues. These C-C linked acetate or pyruvate branching units were located at the α-positions on the extended polyketide chains of jadomycins incorporating 3- and 4-aminomethylbenzoic acids. Labeling studies utilizing [1-13C]-d-glucose provided mechanistic evidence that the C-C bond formation occurred as a result of a previously unidentified post-PKS processing, additional to the enzymes encoded within the biosynthetic gene cluster. Selected compounds were evaluated in cytotoxic or antimicrobial assays.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Carbon/metabolism , Fibroblasts/drug effects , Gram-Positive Bacteria/drug effects , Polyketide Synthases/metabolism , Streptomyces/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Biological Products/chemistry , Biological Products/metabolism , Carbon/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Polyketide Synthases/chemistry , Vero Cells
10.
J Nat Prod ; 81(12): 2768-2772, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30525612

ABSTRACT

A new cyclic lipodepsipeptide, fusaristatin C (1), was obtained from the fungus Pithomyces sp. RKDO 1698, which was isolated from the Caribbean octocoral Eunicea fusca. The 2D structure of fusaristatin C was elucidated using NMR spectroscopy and mass spectrometry, while the absolute configuration of the sole chiral amino acid residue (l-serine) was determined using Marfey's method. 3-Hydroxy-2,11-dimethyltetradecanoic acid (HDMT) was cleaved from 1, and the absolute configuration at the C-3 position was determined using Mosher's ester analysis. Subsequent J-based configuration analysis of 1 allowed for assignment of the C-2 configuration. Fusaristatin C exhibited no antimicrobial activity or cytotoxicity.


Subject(s)
Ascomycota/chemistry , Animals , Cell Line, Tumor , Chlorocebus aethiops , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microbial Sensitivity Tests , Molecular Structure , Vero Cells
11.
J Nat Prod ; 81(4): 858-865, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29616814

ABSTRACT

The amphiphilic siderophore imaqobactin was isolated from the Arctic bacterium Variovorax sp. RKJM285, a strain isolated from marine sediment collected from an inlet near Clyde River, Nunavut, Canada. The 2D structure of imaqobactin was determined by a combination of LC-HRMS, MS/MS, and NMR spectroscopic methods. The absolute configuration of the depsipeptide core was determined by Marfey's analysis, and the relative configuration of the 4,7-diamino-3-hydroxy-2-methylheptanoic acid moiety was determined by NOESY and selective NOE experiments. The photoreductive properties of imaqobactin were tested and are discussed. Initial tests for antimicrobial and cytotoxic activity of imaqobactin were also performed, identifying moderate antimicrobial activity.


Subject(s)
Aquatic Organisms/chemistry , Bacteria/chemistry , Siderophores/chemistry , Siderophores/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Canada , Cell Line, Tumor , Cytotoxins/chemistry , Cytotoxins/pharmacology , Humans , MCF-7 Cells , Marine Biology/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Tandem Mass Spectrometry/methods
12.
Arch Microbiol ; 199(1): 155-169, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27644133

ABSTRACT

Shrimp fisheries along the Brazilian coast have significant environmental impact due to high by-catch rates (21 kg per kilogram of shrimp). Typically discarded, by-catch contains many invertebrates that may host a great variety of bacterial genera, some of which may produce bioactive natural products with biotechnological applications. Therefore, to utilize by-catch that is usually discarded we explored the biotechnological potential of culturable bacteria of two abundant by-catch invertebrate species, the snail Olivancillaria urceus and the sea star Luidia senegalensis. Sediment from the collection area was also investigated. Utilizing multiple isolation approaches, 134 isolates were obtained from the invertebrates and sediment. Small-subunit rRNA (16S) gene sequencing revealed that the isolates belonged to Proteobacteria, Firmicutes and Actinobacteria phyla and were distributed among 28 genera. Several genera known for their capacity to produce bioactive natural products (Micromonospora, Streptomyces, Serinicoccus and Verrucosispora) were retrieved from the invertebrate samples. To query the bacterial isolates for their ability to produce bioactive metabolites, all strains were fermented and fermentation extracts profiled by UP LC-HRMS and tested for antimicrobial activity. Four strains exhibited antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus warneri.


Subject(s)
Bacteria/isolation & purification , Geologic Sediments/microbiology , Invertebrates/microbiology , Snails/microbiology , Starfish/microbiology , Animals , Bacteria/chemistry , Bacteria/classification , Bacteria/genetics , Bioprospecting , Brazil , Phylogeny , Waste Products/analysis
13.
Mar Drugs ; 15(8)2017 Aug 13.
Article in English | MEDLINE | ID: mdl-28805714

ABSTRACT

The discovery of new natural products from fungi isolated from the marine environment has increased dramatically over the last few decades, leading to the identification of over 1000 new metabolites. However, most of the reported marine-derived species appear to be terrestrial in origin yet at the same time, facultatively halo- or osmotolerant. An unanswered question regarding the apparent chemical productivity of marine-derived fungi is whether the common practice of fermenting strains in seawater contributes to enhanced secondary metabolism? To answer this question, a terrestrial isolate of Aspergillus aculeatus was fermented in osmotic and saline stress conditions in parallel across multiple sites. The ex-type strain of A. aculeatus was obtained from three different culture collections. Site-to-site variations in metabolite expression were observed, suggesting that subculturing of the same strain and subtle variations in experimental protocols can have pronounced effects upon metabolite expression. Replicated experiments at individual sites indicated that secondary metabolite production was divergent between osmotic and saline treatments. Titers of some metabolites increased or decreased in response to increasing osmolite (salt or glycerol) concentrations. Furthermore, in some cases, the expression of some secondary metabolites in relation to osmotic and saline stress was attributed to specific sources of the ex-type strains.


Subject(s)
Aspergillus/chemistry , Biological Products/metabolism , Osmotic Pressure , Anti-Bacterial Agents/metabolism , Aspergillus/drug effects , Fermentation , Marine Biology , Molecular Structure , Seawater/microbiology , Secondary Metabolism , Sodium Chloride/pharmacology
14.
Microb Ecol ; 66(4): 972-85, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23913197

ABSTRACT

Pseudopterogorgia elisabethae is a common inhabitant of Caribbean reefs and is a well-known source of diterpenes with diverse biological activities. Notably, this octocoral is the sole source of the pseudopterosin family of anti-inflammatory diterpenes and is harvested to supply commercial demand for these metabolites. We have characterized the composition of the bacterial community associated with P. elisabethae collected from Providencia Island, Colombia, using both culture-dependent and culture-independent approaches. Culture-independent analysis revealed that the bacterial communities were composed of eight phyla, of which Proteobacteria was the most abundant. At the class level, bacterial communities were dominated by Gammaproteobacteria (82-87 %). Additionally, operational taxonomic units related to Pseudomonas and Endozoicomonas species were the most abundant phylotypes consistently associated with P. elisabethae colonies. Culture-dependent analysis resulted in the identification of 40 distinct bacteria classified as Bacilli (15), Actinobacteria (12), Gammaproteobacteria (9), Alphaproteobacteria (3), and Betaproteobacteria (1). Only one of the 40 cultured bacteria was closely related to a dominant phylotype detected in the culture-independent study, suggesting that conventional culturing techniques failed to culture the majority of octocoral-associated bacterial diversity. To the best of our knowledge, this is the first characterization of the bacterial diversity associated with P. elisabethae.


Subject(s)
Anthozoa/microbiology , Bacteria/isolation & purification , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Colombia , Molecular Sequence Data , Phylogeny
15.
J Chem Ecol ; 38(9): 1190-202, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22932867

ABSTRACT

The gorgonian Pseudopterogorgia elisabethae collected at Providencia Island (Colombia) has an unfouled surface, free of obvious algal and invertebrate growth. This gorgonian produces significant amounts of the glycosilated diterpenes pseudopterosins and seco-pseudopterosins (Ps and seco-Ps). Our previous experiments have shown activity of these compounds against eukaryotic (human cancer cell lines and Candida albicans) and prokaryotic cells (Staphylococcus aureus and Enterococcus faecalis). However, the potential role of pseudopterosins on the regulation of the fouling process is still under study. We evaluated the activity of these compounds against bacteria isolated from heavily fouled marine surfaces as an indicator of antifouling activity. Additionally, we assessed their activity against bacteria isolated from P. elisabethae to determine whether potentially they play a role in preventing surface bacterial colonization, thus impairing presumptively the establishment of further successional stages of fouling communities. Results showed that Ps and seco-Ps seem to modulate bacterial growth (controlling Gram-positive bacterial growth and inducing Gram-negative bacterial associations). We thus hypothesized that Ps and seco-Ps may play a role in controlling microbial fouling communities on the surface of this gorgonian. By using bTEFAP and FISH we showed that the most abundant bacteria present in the microbial communities associated with P. elisabethae are Gram-negative bacteria, with Proteobacteria and Gammaproteobacteria the most representative. To evaluate whether Ps and seco-Ps have a direct effect on the structure of the bacterial community associated with P. elisabethae, we tested these compounds against culturable bacteria associated with the surface of P. elisabethae, finding remarkable selectivity against Gram-positive bacteria. The evidence presented here suggests that Ps and seco-Ps might have a role in the selection of organisms associated with the gorgonian surface and in the regulation of the associated bacterial community composition.


Subject(s)
Anthozoa/chemistry , Anthozoa/microbiology , Bacteria/drug effects , Diterpenes/isolation & purification , Diterpenes/pharmacology , Ecological and Environmental Phenomena , Glycosides/isolation & purification , Glycosides/pharmacology , Metagenome/drug effects , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Biofilms/drug effects , Biofilms/growth & development , Biofouling/prevention & control , Diterpenes/analysis , Glycosides/analysis , West Indies
16.
Mar Drugs ; 9(3): 334-43, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21556163

ABSTRACT

To expand the potential of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia islands (southwest Caribbean Sea), we report the anti-microbial profile against four pathogenic microorganisms (Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans) and report a more complete cytotoxic profile against five human cells lines (HeLa, PC-3, HCT116, MCF-7 and BJ) for the compounds PsG, PsP, PsQ, PsS, PsT, PsU, 3-O-acetyl-PsU, seco-PsJ, seco-PsK and IMNGD. For the cytotoxic profiles, all compounds evaluated showed moderate and non-selective activity against both tumor and normal cell lines, where PsQ and PsG were the most active compounds (GI50 values between 5.8 µM to 12.0 µM). With respect to their anti-microbial activity the compounds showed good and selective activity against the Gram-positive bacteria, while they did not show activity against the Gram-negative bacterium or yeast. PsU, PsQ, PsS, seco-PsK and PsG were the most active compounds (IC50 2.9-4.5 µM) against S. aureus and PsG, PsU and seco-PsK showed good activity (IC50 3.1-3.8 µM) against E. faecalis, comparable to the reference drug vancomycin (4.2 µM).


Subject(s)
Anthozoa/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Diterpenes/pharmacology , Glycosides/pharmacology , Animals , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/isolation & purification , Candida albicans/drug effects , Caribbean Region , Cell Line, Tumor , Diterpenes/administration & dosage , Diterpenes/isolation & purification , Glycosides/administration & dosage , Glycosides/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Vancomycin/pharmacology
17.
RSC Adv ; 11(39): 24282-24291, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-35479014

ABSTRACT

This study reports on the preparation of eight new boron-containing capsaicinoids bearing long aliphatic chains, as an expansion of our previous studies to include tertiary amide derivatives into our substrate scope. Our boron-moiety, a pinacolboronate ester (Bpin) fragment, has been incorporated in two locations: as an aryl substituent of the capsaicinoid produced by the reductive amination of veratraldehyde, or at the terminal end of an aliphatic substituent using an iridium catalyzed hydroboration reaction. We report that most compounds in our series show moderate antimicrobial and cytotoxic activity, surpassing activities noted in our previous study.

18.
Front Microbiol ; 9: 3351, 2018.
Article in English | MEDLINE | ID: mdl-30705672

ABSTRACT

Herein we describe a modified bacterial culture methodology as a tool to discover new natural products via supplementing actinomycete fermentation media with autoclaved cultures of "inducer" microbes. Using seven actinomycetes and four inducer microbes, we detected 28 metabolites that were induced in UHPLC-HRESIMS-based analysis of bacterial fermentations. Metabolomic analysis indicated that each inducer elicited a unique response from the actinomycetes and that some chemical responses were specific to each inducer-producer combination. Among these 28 metabolites, hydrazidomycin D, a new hydrazide-containing natural product was isolated from the pair Streptomyces sp. RKBH-B178 and Mycobacterium smegmatis. This result validated the effectiveness of the strategy in discovering new natural products. From the same set of induced metabolites, an in-depth investigation of a fermentation of Streptomyces sp. RKBH-B178 and autoclaved Pseudomonas aeruginosa led to the discovery of a glucuronidated analog of the pseudomonas quinolone signal (PQS). We demonstrated that RKBH-B178 is able to biotransform the P. aeruginosa quorum sensing molecules, 2-heptyl-4-quinolone (HHQ), and PQS to form PQS-GlcA. Further, PQS-GlcA was shown to have poor binding affinity to PqsR, the innate receptor of HHQ and PQS.

19.
FEMS Microbiol Ecol ; 92(9)2016 09.
Article in English | MEDLINE | ID: mdl-27381833

ABSTRACT

The octocoral Erythropodium caribaeorum is an important species in the Caribbean coral reef community and a source of the cytotoxic natural product desmethyleleutherobin. We utilized 16S small subunit rRNA gene amplicon pyrosequencing to characterize the microbiome of E. caribaeorum collected from Florida, USA and San Salvador, The Bahamas at multiple time points. This coral was found to have a very high microbial richness with an average Chao1 estimated richness of 1464 ± 707 operational taxonomic units and average Shannon diversity index of 4.26 ± 1.65. The taxonomic class Gammaproteobacteria was a dominant member in all samples and the genus Endozoicomonas accounted for an average of 37.7% ± 30.0% of the total sequence reads. One Endozoicomonas sp. was found to be a stable member of all E. caribaeorum sequence libraries regardless of location or time of collection and accounted for 30.1% of all sequence reads. This is the first report characterizing the microbiome associated with the encrusting octocoral E. caribaeorum.


Subject(s)
Anthozoa/microbiology , Microbiota , Animals , Caribbean Region , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics
20.
Mycology ; 5(3): 130-144, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-25379337

ABSTRACT

Due to a rate increase in the resistance of microbial pathogens to currently used antibiotics, there is a need in society for the discovery of novel antimicrobials. Historically, fungi are a proven source for antimicrobial compounds. The main goals of this study were to investigate the fungal diversity associated with sea foam collected around the coast of Prince Edward Island and the utility of this resource for the production of antimicrobial natural products. Obtained isolates were identified using ITS and nLSU rDNA sequences, fermented on four media, extracted and fractions enriched in secondary metabolites were screened for antimicrobial activity. The majority of the isolates obtained were ascomycetes, consisting of four recognized marine taxa along with other ubiquitous genera and many 'unknown' isolates that could not be identified to the species level using rDNA gene sequences. Secondary metabolite isolation efforts lead to the purification of the metabolites epolones A and B, pycnidione and coniothyrione from a strain of Neosetophoma samarorum; brefeldin A, leptosin J and the metabolite TMC-264 from an unknown fungus (probably representative of an Edenia sp.); and 1-hydroxy-6-methyl-8-hydroxymethylxanthone, chrysophanol and chrysophanol bianthrone from a Phaeospheria spartinae isolate. The biological activity of each of these metabolites was assessed against a panel of microbial pathogens as well as several cell lines.

SELECTION OF CITATIONS
SEARCH DETAIL