Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Cell Sci ; 129(3): 569-79, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26729221

ABSTRACT

Endothelial-to-mesenchymal transition (EndMT) is characterized by the loss of endothelial cell markers and functions, and coincides with de novo expression of mesenchymal markers. EndMT is induced by TGFƟ1 and changes endothelial microRNA expression. We found that miR-20a is decreased during EndMT, and that ectopic expression of miR-20a inhibits EndMT induction. TGFƟ1 induces cellular hypertrophy in human umbilical vein endothelial cells and abrogates VE-cadherin expression, reduces endothelial sprouting capacity and induces the expression of the mesenchymal marker SM22α (also known as TAGLN). We identified ALK5 (also known as TGFBR1), TGFBR2 and SARA (also known as ZFYVE9) as direct miR-20a targets. Expression of miR-20a mimics abrogate the endothelial responsiveness to TGFƟ1, by decreasing ALK5, TGFBR2 and SARA, and inhibit EndMT, as indicated by the maintenance of VE-cadherin expression, the ability of the cells to sprout and the absence of SM22α expression. FGF2 increases miR-20a expression and inhibits EndMT in TGFƟ1-stimulated endothelial cells. In summary, FGF2 controls endothelial TGFƟ1 signaling by regulating ALK5, TGFBR2 and SARA expression through miR-20a. Loss of FGF2 signaling combined with a TGFƟ1 challenge reduces miR-20a levels and increases endothelial responsiveness to TGFƟ1 through elevated receptor complex levels and activation of Smad2 and Smad3, which culminates in EndMT.


Subject(s)
Cell Transdifferentiation/physiology , Endothelial Cells/metabolism , Fibroblast Growth Factor 2/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Transforming Growth Factor beta1/metabolism , Antigens, CD , Biomarkers/metabolism , Cadherins , Cells, Cultured , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/metabolism , Serine Endopeptidases/metabolism , Signal Transduction/physiology
2.
Cell Mol Gastroenterol Hepatol ; 15(5): 1199-1217, 2023.
Article in English | MEDLINE | ID: mdl-36706916

ABSTRACT

BACKGROUND & AIMS: Barrett's esophagus is considered to be a metaplastic lesion that predisposes for esophageal adenocarcinoma. Development of Barrett's esophagus is considered to be driven by sonic hedgehog mediated bone morphogenetic protein (BMP) signaling. We aimed to investigate in preclinical inĀ vivo models whether targeting canonical BMP signaling could be an effective treatment for Barrett's esophagus. METHODS AND RESULTS: Selective inhibition of BMP2 and BMP4 within an inĀ vivo organoid model of Barrett's esophagus inhibited development of columnar Barrett's cells, while favoring expansion of squamous cells. Silencing of noggin, a natural antagonist of BMP2, BMP4, and BMP7, in a conditional knockout mouse model induced expansion of a Barrett's-like neo-columnar epithelium from multi-lineage glands. Conversely, in this model specific inhibition of BMP2 and BMP4 led to the development of a neo-squamous lineage. In an ablation model, inhibition of BMP2 and BMP4 resulted in the regeneration of neo-squamous epithelium after the cryoablation of columnar epithelium at the squamocolumnar junction. Through lineage tracing the generation of the neo-squamous mucosa was found to originate from K5+ progenitor squamous cells. CONCLUSIONS: Here we demonstrate that specific inhibitors of BMP2 and BMP4 attenuate the development of Barrett's columnar epithelium, providing a novel potential strategy for the treatment of Barrett's esophagus and the prevention of esophageal adenocarcinoma.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Carcinoma, Squamous Cell , Animals , Mice , Adenocarcinoma/pathology , Barrett Esophagus/drug therapy , Barrett Esophagus/pathology , Bone Morphogenetic Protein 4/metabolism , Carcinoma, Squamous Cell/pathology , Epithelium/pathology , Hedgehog Proteins/metabolism
3.
Cell Oncol (Dordr) ; 45(4): 639-658, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35902550

ABSTRACT

PURPOSE: Abnormalities within the Sonic Hedgehog (SHH), Bone Morphogenetic Protein (BMP) and SMAD4 signalling pathways have been associated with the malignant behavior of esophageal adenocarcinoma (EAC). We recently developed two specific llama-derived antibodies (VHHs), C4C4 and C8C8, which target BMP4 and BMP2/4, respectively. Here we aimed to demonstrate the feasibility of the VHHs for the treatment of EAC and to elucidate its underlying mechanism. METHODS: Gene Set Enrichment Analysis (GSEA) was performed on a TCGA dataset, while expression of SHH, BMP2/4 and SMAD4 was validated in a cohort of EAC patients. The effects of the VHHs were tested on the recently established SMAD4(-) ISO76A primary EAC cell line and its counterpart SMAD4(+) ISO76A. In a patient-derived xenograft (PDX) model, the VHHs were evaluated for their ability to selectively target tumor cells and for their effects on tumor growth and survival. RESULTS: High expression of BMP2/4 was detected in all SMAD4 negative EACs. SHH upregulated BMP2/4 expression and induced p38 MAPK signaling in the SMAD4(-) ISO76A cells. Inhibition of BMP2/4 by VHHs decreased the aggressive and chemo-resistant phenotype of the SMAD4(-) ISO76A but not of the SMAD4(+) ISO76A cells. In the PDX model, in vivo imaging indicated that VHHs effectively targeted tumor cells. Both VHHs significantly inhibited tumor growth and acted synergistically with cisplatin. Furthermore, we found that C8C8 significantly improved survival of the mice. CONCLUSIONS: Our data indicate that increased BMP2/4 expression triggers aggressive non-canonical BMP signaling in SMAD4 negative EAC. Inhibiting BMP2/4 decreases malignant behavior and improves survival. Therefore, VHHs directed against BMP2/4 hold promise for the treatment of SMAD4 negative EAC.


Subject(s)
Adenocarcinoma , Bone Morphogenetic Protein 2 , Bone Morphogenetic Protein 4 , Esophageal Neoplasms , Adenocarcinoma/pathology , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Esophageal Neoplasms/pathology , Hedgehog Proteins/metabolism , Humans , Mice , Smad4 Protein/metabolism
4.
PLoS One ; 17(4): e0266812, 2022.
Article in English | MEDLINE | ID: mdl-35395060

ABSTRACT

Huntington's disease (HD) is caused by an expansion of the CAG trinucleotide repeat domain in the huntingtin gene that results in expression of a mutant huntingtin protein (mHTT) containing an expanded polyglutamine tract in the amino terminus. A number of therapeutic approaches that aim to reduce mHTT expression either locally in the CNS or systemically are in clinical development. We have previously described sensitive and selective assays that measure human HTT proteins either in a polyglutamine-independent (detecting both mutant expanded and non-expanded proteins) or in a polyglutamine length-dependent manner (detecting the disease-causing polyglutamine repeats) on the electrochemiluminescence Meso Scale Discovery detection platform. These original assays relied upon polyclonal antibodies. To ensure an accessible and sustainable resource for the HD field, we developed similar assays employing monoclonal antibodies. We demonstrate that these assays have equivalent sensitivity compared to our previous assays through the evaluation of cellular and animal model systems, as well as HD patient biosamples. We also demonstrate cross-site validation of these assays, allowing direct comparison of studies performed in geographically distinct laboratories.


Subject(s)
Huntington Disease , Animals , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Peptides/genetics , Peptides/metabolism , Trinucleotide Repeat Expansion
5.
Cancers (Basel) ; 14(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36139661

ABSTRACT

Esophageal adenocarcinoma (EAC) is a highly aggressive cancer and its response to chemo- and radiotherapy is unpredictable. EACs are highly heterogeneous at the molecular level. The aim of this study was to perform gene expression analysis of EACs to identify distinct molecular subgroups and to investigate expression signatures in relation to treatment response. In this prospective observational study, RNA sequencing was performed on pre-treatment endoscopic EAC biopsies from a discovery cohort included between 2012 and 2017 in one Dutch Academic Center. Four additional cohorts were analyzed for validation purposes. Unsupervised clustering was performed on 107 patients to identify biological EAC subgroups. Specific cell signaling profiles were identified and evaluated with respect to predicting response to neo-adjuvant chemo(radio)therapy. We identified and validated three distinct biological EAC subgroups, characterized by (1) p38 MAPK/Toll-like receptor signaling; (2) activated immune system; and (3) impaired cell adhesion. Subgroup 1 was associated with poor response to chemo-radiotherapy. Moreover, an immune signature with activated T-cell signaling, and increased number of activated CD4 T memory cells, neutrophils and dendritic cells, and decreased M1 and M2 macrophages and plasma cells, was associated with complete histopathological response. This study provides a novel molecular classification for EACs. EAC subgroup 1 proved to be more therapy-resistant, while immune signaling was increased in patients with complete response to chemo-radiotherapy. Our findings give insight into the biology of EACs and in cellular signaling mechanisms underlying response to neo-adjuvant treatment. Future implementation of this classification will improve patient stratification and enhance the development of targeted therapies.

6.
Methods Protoc ; 4(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33526760

ABSTRACT

Patients with epithelial metaplasias have an increased risk of developing malignancies. In Barrett's esophagus, neo-columnar epithelium develops proximal to the squamous-columnar junction (SCJ) in the esophagus as the result of prolonged exposure to bile and acid reflux. Patients require lifetime periodic surveillance, due to lack of effective eradication therapies. The shortage of innovative treatment options is mostly attributable to the paucity of adequate in vivo models of neo-columnar epithelium regeneration. This protocol describes the generation of a cryoablation model to study regeneration of neo-epithelia at the SCJ. Cryoablation of the columnar and squamous mucosa at the SCJ was achieved through local application of liquid N2O in wild-type and reporter mice in combination with acid suppression. Acid suppression alone, showed restoration of the SCJ with normal histological features of both the neo-columnar and neo-squamous epithelium within 14 days. As a proof of principle, mice were treated with mNoggin, an inhibitor of bone morphogenetic proteins (BMPs), which are involved in the development of columnar epithelia. Local application of mNoggin to the ablated area at the SCJ significantly reduced the development of the neo-columnar mucosa. Although this model does not faithfully recapitulate the exact characteristics of Barrett's esophagus, it is a well-suited tool to study the mechanisms of therapeutic inhibition of neo-columnar regeneration. It therefore represents an efficient and easy platform to test novel pharmacological therapies for treatment of neo-epithelial lesions at the SCJ.

7.
Sci Rep ; 10(1): 15579, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968094

ABSTRACT

Barrett's esophagus (BE) predisposes for the malignant condition of esophageal adenocarcinoma (EAC). Since BE patients have few or no symptoms, most of these patients are not identified and not included in surveillance programs. These BE patients are at risk of developing advanced-stage EAC. At present, non-invasive tests to identify BE patients from the general population are lacking. We and others showed that Bone Morphogenetic Protein 4 (BMP4), and other BMPs are upregulated in BE. We aimed to determine if circulating BMPs can be identified and used as blood biomarkers to identify BE patients at high risk in the general population. In this study, we could detect the different BMPs in the blood of 112 BE patients and 134 age- and sex-matched controls. Concentration levels of BMP2, BMP4, and BMP5 were elevated in BE patients, with BMP2 and BMP5 significantly increased. BMP5 remained significant after multivariate analysis and was associated with an increased risk for BE with an OR of 1.49 (p value 0.01). Per log (pg/mL) of BMP5, the odds of having BE increased by 50%. Future optimization and validation studies might be needed to prove its utility as a non-invasive method for the detection of BE in high-risk populations and screening programs.


Subject(s)
Barrett Esophagus/blood , Biomarkers/blood , Bone Morphogenetic Protein 5/blood , Aged , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Bone Morphogenetic Protein 2/blood , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 4/blood , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 5/genetics , Female , Gene Expression Regulation/genetics , Humans , Male , Middle Aged , Risk Factors
8.
MAbs ; 8(4): 678-88, 2016.
Article in English | MEDLINE | ID: mdl-26967714

ABSTRACT

Due to improved understanding of the role of bone morphogenetic protein 4 (BMP4) in an increasing number of diseases, the development of selective inhibitors of BMP4 is an attractive therapeutic option. The currently available BMP4 inhibitors are not suitable as therapeutics because of their low specificity and low effectiveness. Here, we compared newly generated anti-BMP4 llama-derived antibodies (VHHs) with 3 different types of commercially available BMP4 inhibitors, natural antagonists, small molecule BMPR inhibitors and conventional anti-BMP4 monoclonal antibodies. We found that the anti-BMP4 VHHs were as effective as the natural antagonist or small molecule inhibitors, but had higher specificity. We also showed that commercial anti-BMP4 antibodies were inferior in terms of both specificity and effectiveness. These findings might result from the fact that the VHHs C4C4 and C8C8 target a small region within the BMPR1 epitope of BMP4, whereas the commercial antibodies target other areas of the BMP4 molecule. Our results show that the newly developed anti-BMP4 VHHs are promising antibodies with better specificity and effectivity for inhibition of BMP4, making them an attractive tool for research and for therapeutic applications.


Subject(s)
Antibody Specificity/immunology , Bone Morphogenetic Protein 4/antagonists & inhibitors , Camelids, New World/immunology , Single-Domain Antibodies/immunology , Animals , Bone Morphogenetic Protein 4/immunology , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL