Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Alzheimers Dement ; 17(4): 716-725, 2021 04.
Article in English | MEDLINE | ID: mdl-33480157

ABSTRACT

The MarkVCID consortium was formed under cooperative agreements with the National Institute of Neurologic Diseases and Stroke (NINDS) and National Institute on Aging (NIA) in 2016 with the goals of developing and validating biomarkers for the cerebral small vessel diseases associated with the vascular contributions to cognitive impairment and dementia (VCID). Rigorously validated biomarkers have consistently been identified as crucial for multicenter studies to identify effective strategies to prevent and treat VCID, specifically to detect increased VCID risk, diagnose the presence of small vessel disease and its subtypes, assess prognosis for disease progression or response to treatment, demonstrate target engagement or mechanism of action for candidate interventions, and monitor disease progression during treatment. The seven project sites and central coordinating center comprising MarkVCID, working with NINDS and NIA, identified a panel of 11 candidate fluid- and neuroimaging-based biomarker kits and established harmonized multicenter study protocols (see companion paper "MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols" for full details). Here we describe the MarkVCID neuroimaging protocols with specific focus on validating their application to future multicenter trials. MarkVCID procedures for participant enrollment; clinical and cognitive evaluation; and collection, handling, and instrumental validation of fluid samples are described in detail in a companion paper. Magnetic resonance imaging (MRI) has long served as the neuroimaging modality of choice for cerebral small vessel disease and VCID because of its sensitivity to a wide range of brain properties, including small structural lesions, connectivity, and cerebrovascular physiology. Despite MRI's widespread use in the VCID field, there have been relatively scant data validating the repeatability and reproducibility of MRI-based biomarkers across raters, scanner types, and time intervals (collectively defined as instrumental validity). The MRI protocols described here address the core MRI sequences for assessing cerebral small vessel disease in future research studies, specific sequence parameters for use across various research scanner types, and rigorous procedures for determining instrumental validity. Another candidate neuroimaging modality considered by MarkVCID is optical coherence tomography angiography (OCTA), a non-invasive technique for directly visualizing retinal capillaries as a marker of the cerebral capillaries. OCTA has theoretical promise as a unique opportunity to visualize small vessels derived from the cerebral circulation, but at a considerably earlier stage of development than MRI. The additional OCTA protocols described here address procedures for determining OCTA instrumental validity, evaluating sources of variability such as pupil dilation, and handling data to maintain participant privacy. MRI protocol and instrumental validation The core sequences selected for the MarkVCID MRI protocol are three-dimensional T1-weighted multi-echo magnetization-prepared rapid-acquisition-of-gradient-echo (ME-MPRAGE), three-dimensional T2-weighted fast spin echo fluid-attenuated-inversion-recovery (FLAIR), two-dimensional diffusion-weighted spin-echo echo-planar imaging (DWI), three-dimensional T2*-weighted multi-echo gradient echo (3D-GRE), three-dimensional T2 -weighted fast spin-echo imaging (T2w), and two-dimensional T2*-weighted gradient echo echo-planar blood-oxygenation-level-dependent imaging with brief periods of CO2 inhalation (BOLD-CVR). Harmonized parameters for each of these core sequences were developed for four 3 Tesla MRI scanner models in widespread use at academic medical centers. MarkVCID project sites are trained and certified for their instantiation of the consortium MRI protocols. Sites are required to perform image quality checks every 2 months using the Alzheimer's Disease Neuroimaging Initiative phantom. Instrumental validation for MarkVCID MRI-based biomarkers is operationally defined as inter-rater reliability, test-retest repeatability, and inter-scanner reproducibility. Assessments of these instrumental properties are performed on individuals representing a range of cerebral small vessel disease from mild to severe. Inter-rater reliability is determined by distribution of an independent dataset of MRI scans to each analysis site. Test-retest repeatability is determined by repeat MRI scans performed on individual participants on a single MRI scanner after a short (1- to 14-day) interval. Inter-scanner reproducibility is determined by repeat MRI scans performed on individuals performed across four MRI scanner models. OCTA protocol and instrumental validation The MarkVCID OCTA protocol uses a commercially available, Food and Drug Administration-approved OCTA apparatus. Imaging is performed on one dilated and one undilated eye to assess the need for dilation. Scans are performed in quadruplicate. MarkVCID project sites participating in OCTA validation are trained and certified by this biomarker's lead investigator. Inter-rater reliability for OCTA is assessed by distribution of OCTA datasets to each analysis site. Test-retest repeatability is assessed by repeat OCTA imaging on individuals on the same day as their baseline OCTA and a different-day repeat session after a short (1- to 14-day) interval. Methods were developed to allow the OCTA data to be de-identified by the sites before transmission to the central data management system. The MarkVCID neuroimaging protocols, like the other MarkVCID procedures, are designed to allow translation to multicenter trials and as a template for outside groups to generate directly comparable neuroimaging data. The MarkVCID neuroimaging protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the neuroimaging MarkVCID kits will undergo biological validation to determine its ability to measure important aspects of VCID such as cognitive function. The analytic methods for the neuroimaging-based kits and the results of these validation studies will be published separately. The results will ultimately determine the neuroimaging kits' potential usefulness for multicenter interventional trials in small vessel disease-related VCID.


Subject(s)
Biomarkers , Cerebral Small Vessel Diseases/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Neuroimaging/standards , Aged , Angiography , Brain , Female , Humans , Magnetic Resonance Imaging , Male , Tomography, Optical Coherence
2.
Alzheimers Dement ; 17(4): 704-715, 2021 04.
Article in English | MEDLINE | ID: mdl-33480172

ABSTRACT

The concept of vascular contributions to cognitive impairment and dementia (VCID) derives from more than two decades of research indicating that (1) most older individuals with cognitive impairment have post mortem evidence of multiple contributing pathologies and (2) along with the preeminent role of Alzheimer's disease (AD) pathology, cerebrovascular disease accounts for a substantial proportion of this contribution. Contributing cerebrovascular processes include both overt strokes caused by etiologies such as large vessel occlusion, cardioembolism, and embolic infarcts of unknown source, and frequently asymptomatic brain injuries caused by diseases of the small cerebral vessels. Cerebral small vessel diseases such as arteriolosclerosis and cerebral amyloid angiopathy, when present at moderate or greater pathologic severity, are independently associated with worse cognitive performance and greater likelihood of dementia, particularly in combination with AD and other neurodegenerative pathologies. Based on this evidence, the US National Alzheimer's Project Act explicitly authorized accelerated research in vascular and mixed dementia along with frontotemporal and Lewy body dementia and AD itself. Biomarker development has been consistently identified as a key step toward translating scientific advances in VCID into effective prevention and treatment strategies. Validated biomarkers can serve a range of purposes in trials of candidate interventions, including (1) identifying individuals at increased VCID risk, (2) diagnosing the presence of cerebral small vessel disease or specific small vessel pathologies, (3) stratifying study participants according to their prognosis for VCID progression or treatment response, (4) demonstrating an intervention's target engagement or pharmacodynamic mechanism of action, and (5) monitoring disease progression during treatment. Effective biomarkers allow academic and industry investigators to advance promising interventions at early stages of development and discard interventions with low success likelihood. The MarkVCID consortium was formed in 2016 with the goal of developing and validating fluid- and imaging-based biomarkers for the cerebral small vessel diseases associated with VCID. MarkVCID consists of seven project sites and a central coordinating center, working with the National Institute of Neurologic Diseases and Stroke and National Institute on Aging under cooperative agreements. Through an internal selection process, MarkVCID has identified a panel of 11 candidate biomarker "kits" (consisting of the biomarker measure and the clinical and cognitive data used to validate it) and established a range of harmonized procedures and protocols for participant enrollment, clinical and cognitive evaluation, collection and handling of fluid samples, acquisition of neuroimaging studies, and biomarker validation. The overarching goal of these protocols is to generate rigorous validating data that could be used by investigators throughout the research community in selecting and applying biomarkers to multi-site VCID trials. Key features of MarkVCID participant enrollment, clinical/cognitive testing, and fluid biomarker procedures are summarized here, with full details in the following text, tables, and supplemental material, and a description of the MarkVCID imaging biomarker procedures in a companion paper, "MarkVCID Cerebral small vessel consortium: II. Neuroimaging protocols." The procedures described here address a range of challenges in MarkVCID's design, notably: (1) acquiring all data under informed consent and enrollment procedures that allow unlimited sharing and open-ended analyses without compromising participant privacy rights; (2) acquiring the data in a sufficiently wide range of study participants to allow assessment of candidate biomarkers across the various patient groups who might ultimately be targeted in VCID clinical trials; (3) defining a common dataset of clinical and cognitive elements that contains all the key outcome markers and covariates for VCID studies and is realistically obtainable during a practical study visit; (4) instituting best fluid-handling practices for minimizing avoidable sources of variability; and (5) establishing rigorous procedures for testing the reliability of candidate fluid-based biomarkers across replicates, assay runs, sites, and time intervals (collectively defined as the biomarker's instrumental validity). Participant Enrollment Project sites enroll diverse study cohorts using site-specific inclusion and exclusion criteria so as to provide generalizable validation data across a range of cognitive statuses, risk factor profiles, small vessel disease severities, and racial/ethnic characteristics representative of the diverse patient groups that might be enrolled in a future VCID trial. MarkVCID project sites include both prospectively enrolling centers and centers providing extant data and samples from preexisting community- and population-based studies. With approval of local institutional review boards, all sites incorporate MarkVCID consensus language into their study documents and informed consent agreements. The consensus language asks prospectively enrolled participants to consent to unrestricted access to their data and samples for research analysis within and outside MarkVCID. The data are transferred and stored as a de-identified dataset as defined by the Health Insurance Portability and Accountability Act Privacy Rule. Similar human subject protection and informed consent language serve as the basis for MarkVCID Research Agreements that act as contracts and data/biospecimen sharing agreements across the consortium. Clinical and Cognitive Data Clinical and cognitive data are collected across prospectively enrolling project sites using common MarkVCID instruments. The clinical data elements are modified from study protocols already in use such as the Alzheimer's Disease Center program Uniform Data Set Version 3 (UDS3), with additional focus on VCID-related items such as prior stroke and cardiovascular disease, vascular risk factors, focal neurologic findings, and blood testing for vascular risk markers and kidney function including hemoglobin A1c, cholesterol subtypes, triglycerides, and creatinine. Cognitive assessments and rating instruments include the Clinical Dementia Rating Scale, Geriatric Depression Scale, and most of the UDS3 neuropsychological battery. The cognitive testing requires ≈60 to 90 minutes. Study staff at the prospectively recruiting sites undergo formalized training in all measures and review of their first three UDS3 administrations by the coordinating center. Collection and Handling of Fluid Samples Fluid sample types collected for MarkVCID biomarker kits are serum, ethylenediaminetetraacetic acid-plasma, platelet-poor plasma, and cerebrospinal fluid (CSF) with additional collection of packed cells to allow future DNA extraction and analyses. MarkVCID fluid guidelines to minimize variability include fasting morning fluid collections, rapid processing, standardized handling and storage, and avoidance of CSF contact with polystyrene. Instrumental Validation for Fluid-Based Biomarkers Instrumental validation of MarkVCID fluid-based biomarkers is operationally defined as determination of intra-plate and inter-plate repeatability, inter-site reproducibility, and test-retest repeatability. MarkVCID study participants both with and without advanced small vessel disease are selected for these determinations to assess instrumental validity across the full biomarker assay range. Intra- and inter-plate repeatability is determined by repeat assays of single split fluid samples performed at individual sites. Inter-site reproducibility is determined by assays of split samples distributed to multiple sites. Test-retest repeatability is determined by assay of three samples acquired from the same individual, collected at least 5 days apart over a 30-day period and assayed on a single plate. The MarkVCID protocols are designed to allow direct translation of the biomarker validation results to multicenter trials. They also provide a template for outside groups to perform analyses using identical methods and therefore allow direct comparison of results across studies and centers. All MarkVCID protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the MarkVCID kits will undergo biological validation to determine whether the candidate biomarker measures important aspects of VCID such as cognitive function. Analytic methods and results of these validation studies for the 11 MarkVCID biomarker kits will be published separately. The results of this rigorous validation process will ultimately determine each kit's potential usefulness for multicenter interventional trials aimed at preventing or treating small vessel disease related VCID.


Subject(s)
Biomarkers , Cerebral Small Vessel Diseases/diagnosis , Cognitive Dysfunction/diagnosis , Patient Selection , Research Design , Aged , Dementia/etiology , Disease Progression , Female , Humans , Information Dissemination , Male , Neuropsychological Tests , Stroke/etiology
3.
Alzheimers Dement ; 16(12): 1714-1733, 2020 12.
Article in English | MEDLINE | ID: mdl-33030307

ABSTRACT

Vascular contributions to cognitive impairment and dementia (VCID) are characterized by the aging neurovascular unit being confronted with and failing to cope with biological insults due to systemic and cerebral vascular disease, proteinopathy including Alzheimer's biology, metabolic disease, or immune response, resulting in cognitive decline. This report summarizes the discussion and recommendations from a working group convened by the National Heart, Lung, and Blood Institute and the National Institute of Neurological Disorders and Stroke to evaluate the state of the field in VCID research, identify research priorities, and foster collaborations. As discussed in this report, advances in understanding the biological mechanisms of VCID across the wide spectrum of pathologies, chronic systemic comorbidities, and other risk factors may lead to potential prevention and new treatment strategies to decrease the burden of dementia. Better understanding of the social determinants of health that affect risks for both vascular disease and VCID could provide insight into strategies to reduce racial and ethnic disparities in VCID.


Subject(s)
Brain/physiopathology , Cerebrovascular Disorders/physiopathology , Cognitive Dysfunction/physiopathology , Dementia, Vascular/physiopathology , Education , Aging/physiology , Biomarkers , Humans , National Heart, Lung, and Blood Institute (U.S.) , National Institute of Neurological Disorders and Stroke (U.S.) , United States
4.
Cell Mol Neurobiol ; 36(2): 281-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27095366

ABSTRACT

The World Health Organization reports that 47.5 million people are affected by dementia worldwide. With aging populations and 7.7 million new cases each year, the burden of illness due to dementia approaches crisis proportions. Despite significant advances in our understanding of the biology of Alzheimer's disease (AD), the leading dementia diagnosis, the actual causes of dementia in affected individuals are unknown except for rare fully penetrant genetic forms. Evidence from epidemiology and pathology studies indicates that damage to the vascular system is associated with an increased risk of many types of dementia. Both Alzheimer's pathology and cerebrovascular disease increase with age. How AD affects small blood vessel function and how vascular dysfunction contributes to the molecular pathology of Alzheimer's are areas of intense research. The science of vascular contributions to cognitive impairment and dementia (VCID) integrates diverse aspects of biology and incorporates the roles of multiple cell types that support the function of neural tissue. Because of the proven ability to prevent and treat cardiovascular disease and hypertension with population benefits for heart and stroke outcomes, it is proposed that understanding and targeting the biological mechanisms of VCID can have a similarly positive impact on public health.


Subject(s)
Cognitive Dysfunction/pathology , Dementia, Vascular/pathology , Research , Animals , Cost of Illness , Dementia, Vascular/diagnosis , Humans , Models, Biological
5.
Alzheimers Dement ; 11(6): 710-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25510382

ABSTRACT

Scientific evidence continues to demonstrate the linkage of vascular contributions to cognitive impairment and dementia such as Alzheimer's disease. In December, 2013, the Alzheimer's Association, with scientific input from the National Institute of Neurological Disorders and Stroke and the National Heart, Lung and Blood Institute from the National Institutes of Health, convened scientific experts to discuss the research gaps in our understanding of how vascular factors contribute to Alzheimer's disease and related dementia. This manuscript summarizes the meeting and the resultant discussion, including an outline of next steps needed to move this area of research forward.


Subject(s)
Cerebrovascular Disorders/physiopathology , Cognition Disorders/physiopathology , Dementia/physiopathology , Animals , Brain/blood supply , Brain/physiopathology , Congresses as Topic , Humans , National Heart, Lung, and Blood Institute (U.S.) , National Institute of Neurological Disorders and Stroke (U.S.) , Societies , United States
6.
Nat Med ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834847

ABSTRACT

Dementia is often undiagnosed in primary care, and even when diagnosed, untreated. The 5-Cog paradigm, a brief, culturally adept, cognitive detection tool paired with a clinical decision support may reduce barriers to improving dementia diagnosis and care. We performed a randomized controlled trial in primary care patients experiencing health disparities (racial/ethnic minorities and socioeconomically disadvantaged). Older adults with cognitive concerns were assigned in a 1:1 ratio to the 5-Cog paradigm or control. Primary outcome was improved dementia care actions defined as any of the following endpoints within 90 days: new mild cognitive impairment syndrome or dementia diagnoses as well as investigations, medications or specialist referrals ordered for cognitive indications. Groups were compared using intention-to-treat principles with multivariable logistic regression. Overall, 1,201 patients (mean age 72.8 years, 72% women and 94% Black, Hispanic or Latino) were enrolled and 599 were assigned to 5-Cog and 602 to the control. The 5-Cog paradigm demonstrated threefold odds of improvement in dementia care actions over control (odds ratio 3.43, 95% confidence interval 2.32-5.07). No serious intervention-related adverse events were reported. The 5-Cog paradigm improved diagnosis and management in patients with cognitive concerns and provides evidence to promote practice change to improve dementia care actions in primary care.ClinicalTrials.gov: NCT03816644 .

9.
Alzheimers Dement (Amst) ; 14(1): e12261, 2022.
Article in English | MEDLINE | ID: mdl-35382232

ABSTRACT

Introduction: To describe the protocol and findings of the instrumental validation of three imaging-based biomarker kits selected by the MarkVCID consortium: free water (FW) and peak width of skeletonized mean diffusivity (PSMD), both derived from diffusion tensor imaging (DTI), and white matter hyperintensity (WMH) volume derived from fluid attenuation inversion recovery and T1-weighted imaging. Methods: The instrumental validation of imaging-based biomarker kits included inter-rater reliability among participating sites, test-retest repeatability, and inter-scanner reproducibility across three types of magnetic resonance imaging (MRI) scanners using intra-class correlation coefficients (ICC). Results: The three biomarkers demonstrated excellent inter-rater reliability (ICC >0.94, P-values < .001), very high agreement between test and retest sessions (ICC >0.98, P-values < .001), and were extremely consistent across the three scanners (ICC >0.98, P-values < .001). Discussion: The three biomarker kits demonstrated very high inter-rater reliability, test-retest repeatability, and inter-scanner reproducibility, offering robust biomarkers suitable for future multi-site observational studies and clinical trials in the context of vascular cognitive impairment and dementia (VCID).

10.
Cereb Circ Cogn Behav ; 2: 100033, 2021.
Article in English | MEDLINE | ID: mdl-34950896

ABSTRACT

Vascular cognitive impairment (VCI), encompassing vascular dementia, has been claimed as the "second-most common dementia" after Alzheimer Disease. Whether or not this is true, the clinical picture of most dementia in older people includes vascular disease. There are no validated pharmacological targets for prevention or treatment of VCI. This has inspired a multitude of potential treatment approaches, reflected by the articles in this Special Issue. These include in vitro testing of the novel oral anticoagulant dabigatran for protection against ß-amyloid neurotoxicity, and an overview of neuroinflammation in VCI and the role of circulating markers (PIGF, VEGF-D) identified by the MarkVCID study. There are reviews of potential therapeutics, including adrenomedullin and nootropic preparations (exemplified by cerebrolysin). The role of sleep is reviewed, with possible therapeutic targets (5HT2A receptors). There is a clinical study protocol (INVESTIGATE-SVD) and a feasibility analysis for a secondary prevention trial in small vessel disease. Clinical data include secondary analyses of blood pressure and cerebral blood flow from a longitudinal clinical trial (NILVAD), differences between methylphenidate and galantamine responders and non-responders (STREAM-VCI), appraisal of treatment approaches in India, and primary outcomes from a randomised trial of Argentine tango dancing to preserve cognition in African American women (ACT). Treating vascular disease has great potential to improve global cognitive health, with public health impacts alongside individual benefit. Vascular disease burden varies across populations, offering the possibility of proactively addressing health inequity in dementia using vascular interventions. The next 5-10 years will witness cost-effective lifestyle interventions, repurposed drugs and novel therapeutics.

11.
Nat Neurosci ; 8(12): 1720-6, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16299502

ABSTRACT

Signaling through gap junctions (electrical synapses) is important in the development of the mammalian central nervous system. Abundant between neurons during postnatal development, gap junction coupling subsequently decreases and remains low in the adult, confined to specific subsets of neurons. Here we report that developmental uncoupling of gap junctions in the rat hypothalamus in vivo and in vitro is associated with a decrease in connexin 36 (Cx36) protein expression. Both developmental gap junction uncoupling and Cx36 downregulation are prevented by the blockade of NMDA glutamate receptors, action potentials and the calcium-cyclic AMP response element binding protein (CREB), and are accelerated by CREB overexpression. Developmental gap junction uncoupling and Cx36 downregulation are not affected by blockade of non-NMDA glutamate receptors, and do not occur in hypothalamic neurons from NMDA receptor subunit 1 (NMDAR1) knockout mice. These results demonstrate that NMDA receptor activity contributes to the developmental uncoupling of gap junctions via CREB-dependent downregulation of Cx36.


Subject(s)
Connexins/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Gap Junctions/metabolism , Hypothalamus/growth & development , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Action Potentials/physiology , Animals , Cell Communication/physiology , Cell Differentiation/physiology , Cells, Cultured , Down-Regulation/physiology , Female , Hypothalamus/cytology , Hypothalamus/metabolism , Male , Mice , Mice, Knockout , Neurons/cytology , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics , Signal Transduction/physiology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Gap Junction delta-2 Protein
12.
Alzheimers Dement (N Y) ; 5: 789-796, 2019.
Article in English | MEDLINE | ID: mdl-31921967

ABSTRACT

The research into vascular contributions to cognitive impairment and dementia (VCID) aims to understand the importance of cerebrovascular biology in cognitive decline. Prevention and treatment of VCID is poised to have major impact on dementia-related disease burden and is thus a critical emerging objective in dementia research. This article presents VCID consortia focused on multidisciplinary approaches to identify key pathologic targets and develop diagnostic tools with the goal of bridging the divide between basic research and clinical trials. Members of these multi-institute, multidisciplinary consortia provide a prospective on the history and emerging science of VCID and how VCID consortia can address some of the more complex questions in VCID and drive the field forward. These consortia, and others like them, are uniquely suited to tackle some of the most difficult obstacles in translating research to the clinic.

13.
Alzheimers Dement (N Y) ; 5: 107-117, 2019.
Article in English | MEDLINE | ID: mdl-31011621

ABSTRACT

White matter hyperintensities (WMHs) are frequently seen on brain magnetic resonance imaging scans of older people. Usually interpreted clinically as a surrogate for cerebral small vessel disease, WMHs are associated with increased likelihood of cognitive impairment and dementia (including Alzheimer's disease [AD]). WMHs are also seen in cognitively healthy people. In this collaboration of academic, clinical, and pharmaceutical industry perspectives, we identify outstanding questions about WMHs and their relation to cognition, dementia, and AD. What molecular and cellular changes underlie WMHs? What are the neuropathological correlates of WMHs? To what extent are demyelination and inflammation present? Is it helpful to subdivide into periventricular and subcortical WMHs? What do WMHs signify in people diagnosed with AD? What are the risk factors for developing WMHs? What preventive and therapeutic strategies target WMHs? Answering these questions will improve prevention and treatment of WMHs and dementia.

14.
Neurosci Lett ; 445(1): 26-30, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-18778753

ABSTRACT

We recently used Western blots for connexin 36 and neuronal dye coupling with neurobiotin to measure developmental decrease in neuronal gap junction coupling in cell cultures. To ask whether Ca2+ imaging also can be used to measure changes in the amount of neuronal gap junction coupling, we defined a Ca2+ coupling coefficient as the percentage of neurons with bicuculline-induced increases in intracellular Ca2+ that are suppressed by blocking gap junctions. We demonstrate in rat and mouse hypothalamic neuronal cultures that the Ca2+ coupling coefficient decreases during culture development, this decrease is prevented by manipulations that also prevent developmental decrease in neuronal gap junction coupling, and the coefficient is low in cultures lacking connexin 36. The results indicate that Ca2+ imaging is a useful tool to quantify the amount of neuronal gap junction coupling in cultures.


Subject(s)
Calcium/metabolism , Diagnostic Imaging/methods , Gap Junctions/metabolism , Neurons/metabolism , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Analysis of Variance , Anesthetics/pharmacology , Animals , Bicuculline/pharmacology , CREB-Binding Protein/metabolism , CREB-Binding Protein/pharmacology , Cells, Cultured , Connexins/deficiency , Embryo, Mammalian , Excitatory Amino Acid Antagonists/pharmacology , GABA Antagonists/pharmacology , Glycyrrhetinic Acid/pharmacology , Halothane/pharmacology , Hypothalamus, Middle/cytology , Mice , Mice, Knockout , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/deficiency , Valine/analogs & derivatives , Valine/pharmacology , Gap Junction delta-2 Protein
15.
Neurology ; 89(23): 2381-2391, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29117955

ABSTRACT

Goal 1 of the National Plan to Address Alzheimer's Disease is to prevent and effectively treat Alzheimer disease and Alzheimer disease-related dementias by 2025. To help inform the research agenda toward achieving this goal, the NIH hosts periodic summits that set and refine relevant research priorities for the subsequent 5 to 10 years. This proceedings article summarizes the 2016 Alzheimer's Disease-Related Dementias Summit, including discussion of scientific progress, challenges, and opportunities in major areas of dementia research, including mixed-etiology dementias, Lewy body dementia, frontotemporal degeneration, vascular contributions to cognitive impairment and dementia, dementia disparities, and dementia nomenclature.


Subject(s)
Alzheimer Disease/therapy , Alzheimer Disease/genetics , Alzheimer Disease/prevention & control , Dementia/prevention & control , Dementia/therapy , Goals , Humans , Research , United States
16.
J Neurosci ; 24(42): 9441-50, 2004 Oct 20.
Article in English | MEDLINE | ID: mdl-15496680

ABSTRACT

Genetic deletion of NMDA glutamate receptors disrupts development of whisker-related neuronal patterns in the somatosensory system. Independent studies have shown that NMDA receptor antagonists increase cell death among developing neurons. Here, we report that a dramatic feature of the developing somatosensory system in newborn NMDA receptor 1 (NMDAR1) knock-out mice is increased cell death in the ventrobasal nucleus (VB) of the thalamus. Sections were subject to terminal deoxynucleotidyl transferase dUTP nick end labeling staining for apoptotic DNA fragmentation, thionine staining for pyknotic nuclei, silver staining for degenerating cells, and immunostaining for caspase-3. All four methods demonstrated that deletion of NMDAR1 causes a large (on the order of threefold to fivefold) increase in cell death in the VB. The NMDA receptor antagonists dizocilpine maleate (MK-801) and phencyclidine also increase cell death in this structure. The onset of increased cell death in the VB in the absence of NMDA receptor function is approximately the time of birth, overlaps with naturally occurring cell death and synaptogenesis, and displays some anatomical specificity. For example, there was no increase in cell death in the hippocampus or neocortex of NMDAR1 knock-out mice at any of the time points examined: embryonic day 15.5 (E15.5), E17.5, and postnatal day 0. We also report a significant reduction in the size of the VB that is evident starting at E17.5. The results indicate that NMDA receptors play a major role in cell survival during naturally occurring cell death in the VB and demonstrate that cell death is a consideration in NMDA receptor knock-out studies.


Subject(s)
Apoptosis/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Ventral Thalamic Nuclei/embryology , Vibrissae/innervation , Animals , Caspase 3 , Caspases/analysis , Cell Nucleus/pathology , In Situ Nick-End Labeling , Mice , Mice, Knockout , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/genetics , Ventral Thalamic Nuclei/cytology , Ventral Thalamic Nuclei/pathology
17.
Neurology ; 83(9): 851-60, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25080517

ABSTRACT

The National Alzheimer's Project Act, signed into law in 2011, mandates a National Plan to Address Alzheimer's Disease that is updated annually. In the Plan, the term Alzheimer disease includes not only Alzheimer disease (AD) proper, but also several specified related dementias, namely, frontotemporal, Lewy body, vascular, and mixed dementia. In response to a specific action item in the 2012 National Plan, the National Institute of Neurological Disorders and Stroke, in collaboration with the National Institute on Aging, convened panels of experts and conducted a 2-day public conference to develop research priorities and timelines for addressing Alzheimer disease-related dementias (ADRD) in 5 topic areas: multiple etiology dementias, health disparities, Lewy body dementias including dementia with Lewy bodies and Parkinson disease dementia, frontotemporal dementia and related tauopathies, and vascular contributions to ADRD. By design, the product was up to 8 prioritized research recommendations in each topic area including estimated timelines from when work on a recommendation is started to completion or to full implementation of an ongoing activity, and recognition of shared research themes across recommendations. These included increased education and training of both researchers and health care professionals, addressing health disparities, fundamental neurobiology research, advanced diagnostics, collaborative biosample repositories, and a focus on developing effective interventions to prevent or treat ADRD by the year 2025 as targeted by the National Plan.


Subject(s)
Alzheimer Disease , Dementia , Humans , Research , United States
18.
PLoS One ; 7(8): e43099, 2012.
Article in English | MEDLINE | ID: mdl-22952635

ABSTRACT

Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community.


Subject(s)
Fibroblasts/cytology , Mutation , Nervous System Diseases/genetics , Nervous System Diseases/physiopathology , Tissue Banks , Access to Information , Biopsy , Cell Differentiation , Cell Line , Cell Proliferation , Databases, Factual , Fibroblasts/metabolism , Humans , Immunohistochemistry/methods , Induced Pluripotent Stem Cells/cytology , Models, Genetic
19.
PLoS One ; 5(10): e13443, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20976178

ABSTRACT

BACKGROUND: Genetic ancestry is known to impact outcomes of genotype-phenotype studies that are designed to identify risk for common diseases in human populations. Failure to control for population stratification due to genetic ancestry can significantly confound results of disease association studies. Moreover, ancestry is a critical factor in assessing lifetime risk of disease, and can play an important role in optimizing treatment. As modern medicine moves towards using personal genetic information for clinical applications, it is important to determine genetic ancestry in an accurate, cost-effective and efficient manner. Self-identified race is a common method used to track and control for population stratification; however, social constructs of race are not necessarily informative for genetic applications. The use of ancestry informative markers (AIMs) is a more accurate method for determining genetic ancestry for the purposes of population stratification. METHODOLOGY/PRINCIPAL FINDINGS: Here we introduce a novel panel of 36 microsatellite (MSAT) AIMs that determines continental admixture proportions. This panel, which we have named Continental Ancestry Informative Markers or CoAIMs, consists of MSAT AIMs that were chosen based upon their measure of genetic variance (F(st)), allele frequencies and their suitability for efficient genotyping. Genotype analysis using CoAIMs along with a Bayesian clustering method (STRUCTURE) is able to discern continental origins including Europe/Middle East (Caucasians), East Asia, Africa, Native America, and Oceania. In addition to determining continental ancestry for individuals without significant admixture, we applied CoAIMs to ascertain admixture proportions of individuals of self declared race. CONCLUSION/SIGNIFICANCE: CoAIMs can be used to efficiently and effectively determine continental admixture proportions in a sample set. The CoAIMs panel is a valuable resource for genetic researchers performing case-control genetic association studies, as it can control for the confounding effects of population stratification. The MSAT-based approach used here has potential for broad applicability as a cost effective tool toward determining admixture proportions.


Subject(s)
Cost-Benefit Analysis , Genealogy and Heraldry , Genotype , Phenotype
20.
J Neurophysiol ; 99(5): 2443-55, 2008 May.
Article in English | MEDLINE | ID: mdl-18322006

ABSTRACT

Specification of neurotransmitter phenotype is critical for neural circuit development and is influenced by intrinsic and extrinsic factors. Recent findings in rat hypothalamus in vitro suggest the role of neurotransmitter glutamate in the regulation of cholinergic phenotype. Here we extended our previous studies on the mechanisms of glutamate-dependent regulation of cholinergic phenotypic properties in hypothalamic neurons. Using immunocytochemistry, electrophysiology, and calcium imaging, we demonstrate that hypothalamic expression of choline acetyltransferase (the cholinergic marker) and responsiveness of neurons to acetylcholine (ACh) receptor agonists increase during chronic administration of an N-methyl-D-aspartate receptor (NMDAR) blocker, MK-801, in developing rats in vivo and genetic and pharmacological inactivation of NMDARs in mouse and rat developing neuronal cultures. In hypothalamic cultures, an inactivation of NMDA receptors also induces ACh-dependent synaptic activity, as do inactivations of PKA, ERK/MAPK, CREB, and NF-kappaB, which are known to be regulated by NMDA receptors. Interestingly, the increase in cholinergic properties in developing neurons that is induced by NMDAR blockade is prevented by the blockade of ACh receptors, suggesting that function of ACh receptor is required for the cholinergic up-regulation. Using dual recording of monosynaptic excitatory postsynaptic currents, we further demonstrate that chronic inactivation of ionotropic glutamate receptors induces the cholinergic phenotype in a subset of glutamatergic neurons. The phenotypic switch is partial as ACh and glutamate are coreleased. The results suggest that developing neurons may not only coexpress multiple transmitter phenotypes, but can also change the phenotypes following changes in signaling in neuronal circuits.


Subject(s)
Neurons/physiology , Parasympathetic Nervous System/cytology , Parasympathetic Nervous System/physiology , Acetylcholine/physiology , Animals , Calcium/metabolism , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/physiology , Cyclic AMP-Dependent Protein Kinases/physiology , Dizocilpine Maleate/pharmacology , Electrophysiology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/physiology , Extracellular Signal-Regulated MAP Kinases/physiology , Glutamic Acid/physiology , Immunohistochemistry , In Vitro Techniques , Male , Mice , Mice, Knockout , Mitogen-Activated Protein Kinases/physiology , NF-kappa B/physiology , Neurons/drug effects , Parasympathetic Nervous System/drug effects , Phenotype , Rats , Rats, Sprague-Dawley , Receptors, Cholinergic/physiology , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/physiology , Synaptic Transmission/physiology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL