Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 800: 149486, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34391157

ABSTRACT

This study evaluates geochemical and oxidative potential (OP) properties of the respirable (finer than 4 µm) fractions of 22 powdered coal samples from channel profiles (CP4) in Chinese mined coals. The CP4 fractions extracted from milled samples of 22 different coals were mineralogically and geochemically analysed and the relationships with the OP evaluated. The evaluation between CP4/CP demonstrated that CP4 increased concentrations of anatase, Cs, W, Zn and Zr, whereas sulphates, Fe, S, Mo, Mn, Hf and Ge decreased their CP4 concentrations. OP results from ascorbic acid (AA), glutathione (GSH) and dithiothreitol (DTT) tests evidenced a clear link between specific inorganic components of CP4 with OPAA and the organic fraction of OPGSH and OPDTT. Correlation analyses were performed for OP indicators and the geochemical patterns of CP4. These were compared with respirable dust samples from prior studies. They indicate that Fe (r = 0.83), pyrite (r = 0.66) and sulphate minerals (r = 0.42) (tracing acidic species from pyrite oxidation), followed by S (r = 0.50) and ash yield (r = 0.46), and, to a much lesser extent, Ti, anatase, U, Mo, V and Pb, are clearly linked with OPAA. Moreover, OPGSH correlation was identified by organic matter, as moisture (r = 0.73), Na (r = 0.56) and B (r = 0.51), and to a lesser extent by the coarse particle size, Ca and carbonate minerals. In addition, Mg (r = 0.70), B (r = 0.47), Na (r = 0.59), Mn, Ba, quartz, particle size and Sr regulate OPDTT correlations. These became more noticeable when the analysis was done for samples of the same type of coal rank, in this case, bituminous.


Subject(s)
Coal , Dust , China , Coal/analysis , Dust/analysis , Oxidative Stress , Powders
2.
Sci Total Environ ; 571: 237-50, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27474834

ABSTRACT

With the objective of estimating the impact of harbour activities on ambient PM10 and PM2.5 levels at the urban area of Barcelona, a one year long monitoring campaign was carried out in the context of the European APICE project (MED-FEDER-EC). This campaign was simultaneously conducted at the port and a central urban background site. A detailed PM10 and PM2.5 chemical speciation analysis was carried out with samples from both sites. Subsequently, a source apportionment analysis by means of the PMF receptor model was performed. Six common factors were identified, explaining local to regional emission sources (fuel oil combustion, industrial emissions, mineral-road dust resuspension, and road traffic emissions) and aerosol formation/transformation processes (secondary aerosols including ammonium sulphate and organic aerosols, and a mixed source accounting for aged sea spray and secondary nitrate). Around 50-55% PM10 and PM2.5 measured at the port was attributed to harbour activities: mineral matter from road dust and construction works of a new port area, vehicle traffic and fuel oil combustion. The estimated contribution of harbour emissions to the urban background reached 9-12% for PM10 and 11-15% for PM2.5 and is linked to primary emissions from fuel oil combustion but also to the formation of secondary aerosols. It becomes relevant to highlight the significantly higher contribution of secondary aerosols at the urban background when compared with the harbour site. Our hypothesis points to the fast formation of secondary ammonium sulphate within the city, after the reaction of SO2/H2SO4 transported by sea breezes with NH3, which is emitted in large amounts in Barcelona; and also to the enhanced formation of secondary organic aerosols within the city. This study broadens our knowledge on atmospheric phenomenology in urban Mediterranean cities and claims for effective abatement strategies focused on maritime practises, in agreement with the driving axis of the APICE project.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Particulate Matter/analysis , Environmental Monitoring , Particle Size , Spain
3.
Sci Total Environ ; 463-464: 497-507, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23831796

ABSTRACT

An intensive monitoring campaign was carried out in the harbor of Barcelona (Spain) to quantify the contribution of primary shipping emissions (PSE) on PM10. Chemical composition of inorganic species, as well as OC and EC, was completed, and a source apportionment analysis by Positive Matrix Factorization was conducted. Among the 6 sources extracted, two were linked to harbor emissions: dusty materials released in different areas along the harbor and fuel-oil combustion. On average, harbor emissions accounted for 31% of the PM10 mass. Since the chemical signature of PSE was not determined neither their contribution was obtained, additional approaches were followed and mainly consisted in: 1) the evaluation of V/Ni and V/Cu ratios to identify those days affected by PSE; 2) the identification of the chemical components increasing under the influence of PSE; 3) the calculation of the daily and average PSE from their experimentally-determined chemical signature and the experimental concentrations of vanadium. As a result, the contribution of PSE was estimated in 0.84 µg m(-3) (2.7% of PM10) and the residual fuel-oil combustion factor (3.6 µg m(-3), 12% of PM10) was interpreted as aged shipping emissions. The present study splits the contribution of shipping emissions into primary and aged, and highlights the importance of atmospheric mixing and aging processes in western Mediterranean atmospheres. In the case of shipping emissions, the aged products were found to be dominant with respect to the primary ones even in the vicinity of the source.

SELECTION OF CITATIONS
SEARCH DETAIL