Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 24(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671588

ABSTRACT

Lamiaceae is one of the largest families of angiosperms and is classified into 12 subfamilies that are composed of 295 genera and 7775 species. It presents a variety of secondary metabolites such as diterpenes that are commonly found in their species, and some of them are known to be chemotaxonomic markers. The aim of this work was to construct a database of diterpenes and to use it to perform a chemotaxonomic analysis among the subfamilies of Lamiaceae, using molecular descriptors and self-organizing maps (SOMs). The 4115 different diterpenes corresponding to 6386 botanical occurrences, which are distributed in eight subfamilies, 66 genera, 639 different species and 4880 geographical locations, were added to SistematX. Molecular descriptors of diterpenes and their respective botanical occurrences were used to generate the SOMs. In all obtained maps, a match rate higher than 80% was observed, demonstrating a separation of the Lamiaceae subfamilies, corroborating with the morphological and molecular data proposed by Li et al. Therefore, through this chemotaxonomic study, we can predict the localization of a diterpene in a subfamily and assist in the search for secondary metabolites with specific structural characteristics, such as compounds with potential biological activity.


Subject(s)
Bioprospecting , Diterpenes/classification , Lamiaceae/classification , Algorithms , Databases as Topic , Diterpenes/chemistry , Machine Learning , Phylogeny
2.
Curr Top Med Chem ; 21(21): 1943-1974, 2021.
Article in English | MEDLINE | ID: mdl-34544342

ABSTRACT

BACKGROUND: Neglected diseases require special attention when looking for new therapeutic alternatives, as these are diseases of extreme complexity and severity that affect populations belonging to lower social classes who lack access to basic rights, such as sanitation. INTRODUCTION: Among the alternatives available for obtaining new drugs is Medicinal Chemistry, which is responsible for the discovery, identification, invention, and preparation of prototypes. In this perspective, the present work aims to make a bibliographic review on the recent studies of Medicinal Chemistry applied to neglected diseases. METHODS: A literature review was carried out by searching the "Web of Sciences" database, including recent articles published on the Neglected Drug Design. RESULTS: In general, it was noticed that the most studied neglected diseases corresponded to Chagas disease and leishmaniasis, with studies on organic synthesis, optimization of structures, and molecular hybrids being the most used strategies. It is also worth mentioning the growing number of computationally developed studies, providing speed and optimization of costs in the procurement process. CONCLUSION: The CADD approach and organic synthesis studies, when applied in the area of Medicinal Chemistry, have proven to be important in the research and discovery of drugs for Neglected Diseases, both in terms of planning the experimental methodology used to obtain it and in the selection of compounds with higher activity potential.


Subject(s)
Chemistry, Pharmaceutical , Drug Design , Neglected Diseases/drug therapy , Chagas Disease/drug therapy , Humans , Leishmaniasis/drug therapy
3.
Food Chem Toxicol ; 147: 111899, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33279675

ABSTRACT

Pesticides are used to control and combat insects and pests in the agricultural sector, households, and public health programs. The frequent and disorderly use of these pesticides may lead to variety of undesired effects. Therefore, natural products have many advantages over to synthetic compounds to be used as insecticides. The goal of this study was to find natural products with insecticidal potential against Musca domestica and Mythimna separata. To achieve this goal, we developed predictive QSAR models using MuDRA, PLS, and RF approaches and performed virtual screening of 117 natural products. As a result of QSAR modeling, we formulated the recommendations regarding physico-chemical characteristics for promising compounds active against Musca domestica and Mythimna separata. Homology models were successfully built for both species and molecular docking of QSAR hits vs known insecticides allowed us to prioritize twenty-two compounds against Musca domestica and six against Mythimna separata. Our results suggest that pimarane diterpenes, abietanes diterpenes, dimeric diterpenes and scopadulane diterpenes obtained from aerial parts of species of the genus Calceolaria (Calceolariaceae: Scrophulariaceae) can be considered as potential insecticidal.


Subject(s)
Diptera/drug effects , Diterpenes/chemistry , Diterpenes/pharmacology , Insecticides/pharmacology , Animals , Drug Design , Houseflies/drug effects , Models, Biological , Molecular Structure , Quantitative Structure-Activity Relationship , Scrophulariaceae/chemistry , Sensitivity and Specificity
4.
Future Med Chem ; 12(24): 2191-2207, 2020 12.
Article in English | MEDLINE | ID: mdl-33243002

ABSTRACT

Aim: Selenium-based compounds have antitumor potential. We used a ligand-based virtual screening analysis to identify selenoglycolicamides with potential antitumor activity. Results & Conclusion: Compounds 3, 6, 7 and 8 were selected for in vitro cytotoxicity tests against various cell lines, according to spectrophotometry results. Compound 3 presented the best cytotoxicity results against a promyelocytic leukemia line (HL-60) and was able to induce cell death at a frequency similar to that observed for doxorubicin. The docking study showed that compound 3 has good interaction energies with the targets caspase-3, 7 and 8, which are components of the apoptotic pathway. These results suggested that selenium has significant pharmacological potential for the selective targeting of tumor cells, inducing molecular and cellular events that culminate in tumor cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Selenium Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , HL-60 Cells , Humans , Molecular Structure , Selenium Compounds/chemical synthesis , Selenium Compounds/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL