Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nutr Neurosci ; : 1-13, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794782

ABSTRACT

OBJECTIVES: Common mental disorders (CMD) are associated with impaired frontal excitatory/inhibitory (E/I) balance and reduced grey matter volume (GMV). Larger GMV (in the areas that are implicated in CMD-pathology) and improved CMD-symptomatology have been observed in individuals who adhere to high quality diets. Moreover, preclinical studies have shown altered neurometabolites (primarily gamma-aminobutyric acid: GABA and glutamate: GLU) in relation to diet quality. However, neurochemical correlates of diet quality and how these neurobiological changes are associated with CMD and with its transdiagnostic factor, rumination, is unknown in humans. Therefore, in this study, we examined the associations between diet quality and frontal cortex neuro-chemistry and structure, as well as CMD and rumination in humans. METHODS: Thirty adults were classified into high and low diet quality groups and underwent 1H-MRS to measure medial prefrontal cortex (mPFC) metabolite concentrations and volumetric imaging to measure GMV. RESULTS: Low (vs High) diet quality group had reduced mPFC-GABA and elevated mPFC-GLU concentrations, as well as reduced right precentral gyrus (rPCG) GMV. However, CMD and rumination were not associated with diet quality. Notably, we observed a significant negative correlation between rumination and rPCG-GMV and a marginally significant association between rumination and mPFC-GLU concentrations. There was also a marginally significant association between mPFC-GLU concentrations and rPCG-GMV. DISCUSSION: Adhering to unhealthy dietary patterns may be associated with compromised E/I balance, and this could affect GMV, and subsequently, rumination.

2.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762412

ABSTRACT

Wholegrains contain both fibre and phenolic acids (PAs), and their gastrointestinal modifications are critical for their bioavailability and bioactivity. We evaluated the modifications on the PA profile and gut microbiota composition of selected Nigerian wholegrains, following cooking and gastrointestinal digestion. Red fonio, red millet, red sorghum, and white corn were cooked, digested, and fermented using an in vitro colonic model. A total of 26 PA derivatives were quantified in soluble and bound fractions using Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) analysis. DNA samples were analysed using 16S rRNA amplicon sequencing to profile the microbiota composition. The results show that cooking and digestion significantly affected the levels of PAs in all grains (p ≤ 0.05) compared to raw grains. Colonic fermentation resulted in a peak of total soluble PAs at 4-6 h for red sorghum and white corn and at 24 h for red millet and red fonio. Enterobacteriaceae genera were the most abundant at 24 h in all grains studied. 3-hydroxybenzaldehyde correlated positively with the relative abundance of Dorea and the mucus-degrader bacteria Akkermansia (p ≤ 0.05), whereas hydroferulic acid and isoferulic acid levels correlated negatively with Oscillospira and Ruminococcus (p ≤ 0.05), respectively. Our data indicate that cooking, digestion, and colonic fermentation affect the release of bound PAs from wholegrains and, consequently, their metabolic conversion. Furthermore, PA fermentation in the gut is associated with potentially relevant changes in the microbiota. This in vitro study provides the basis for the design of an in vivo human intervention study that can confirm the trends herein observed but also assess the impact on health outcomes.


Subject(s)
Gastrointestinal Microbiome , Humans , Fermentation , Chromatography, Liquid , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Tandem Mass Spectrometry , Cooking , Edible Grain/genetics , Digestion
3.
Molecules ; 26(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573121

ABSTRACT

Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural sources of bioactive compounds and useful metabolites, with many biological and physiological activities to be used in functional foods or in human nutraceuticals for the management of MetS and related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more bioactive components than either red and green seaweeds. Among the different brown seaweed species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest total phenolic content. However, the evidence base relies mainly on cell line and small animal models, with few studies to date involving humans. This review intends to provide an overview of the potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management and prevention of MetS and related conditions, based on the available evidence obtained from clinical trials.


Subject(s)
Ascophyllum/chemistry , Fucus/chemistry , Metabolic Syndrome/diet therapy , Plant Extracts/therapeutic use , Clinical Trials as Topic , Glycoside Hydrolase Inhibitors/therapeutic use , Humans , Metabolic Syndrome/epidemiology , Metabolic Syndrome/pathology , Plant Extracts/chemistry , Seaweed/chemistry
4.
Molecules ; 26(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923841

ABSTRACT

The response of a coeliac and a healthy gut microbiota to the green algae Chlorella pyrenoidosa was evaluated using an in vitro continuous, pH controlled, gut model system, which simulated the human colon. The effect of C. pyrenoidosa on the microbial structure was determined by 16S rRNA gene sequencing and inferred metagenomics, whereas the metabolic activitywas determined by1H-nuclear magnetic resonancespectroscopic analysis. The addition of C. pyrenoidosa significantly increased the abundance of the genera Prevotella, Ruminococcus and Faecalibacterium in the healthy donor, while an increase in Faecalibacterium, Bifidobacterium and Megasphaera and a decrease in Enterobacteriaceae were observed in the coeliac donor. C. pyrenoidosa also altered several microbial pathways including those involved in short-chain fatty acid (SCFA) production. At the metabolic level, a significant increase from baseline was seen in butyrate and propionate (p < 0.0001) in the healthy donor, especially in vessels 2 and 3. While acetate was significantly higher in the healthy donor at baseline in vessel 3 (p < 0.001) compared to the coeliac donor, this was markedly decreased after in vitro fermentation with C. pyrenoidosa. This is the first in vitro fermentation study of C. pyrenoidosa and human gut microbiota, however, further in vivo studies are needed to prove its efficacy.


Subject(s)
Chlorella , Gastrointestinal Microbiome/physiology , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Fermentation/physiology , RNA, Ribosomal, 16S
5.
Microb Cell Fact ; 19(1): 82, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32245478

ABSTRACT

BACKGROUND: Dietary lignans belong to the group of phytoestrogens together with coumestans, stilbenes and isoflavones, and themselves do not exhibit oestrogen-like properties. Nonetheless, the gut microbiota converts them into enterolignans, which show chemical similarity to the human oestrogen molecule. One of the richest dietary sources of lignans are oilseeds, including flaxseed. The aim of this pilot study was to determine the concentration of the main dietary lignans in an oilseed mix, and explore the gut microbiota-dependent production of enterolignans for oestrogen substitution in young and premenopausal women. The oilseed mix was fermented in a pH-controlled batch culture system inoculated with women's faecal samples. The lignan content and enterolignan production were measured by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and the faecal-derived microbial communities were profiled by 16S rRNA gene-based next-generation sequencing. RESULTS: In vitro batch culture fermentation of faecal samples inoculated with oilseed mix for 24 h resulted in a substantial increase in enterolactone production in younger women and an increase in enterodiol in the premenopausal group. As for the gut microbiota, different baseline profiles were observed as well as different temporal dynamics, mainly related to Clostridiaceae, and Klebsiella and Collinsella spp. CONCLUSIONS: Despite the small sample size, our pilot study revealed that lignan-rich oilseeds could strongly influence the faecal microbiota of both younger and premenopausal females, leading to a different enterolignan profile being produced. Further studies in larger cohorts are needed to evaluate the long-term effects of lignan-rich diets on the gut microbiota and find out how enterolactone-producing bacterial species could be increased. Diets rich in lignans could potentially serve as a safe supplement of oestrogen analogues to meet the cellular needs of endogenous oestrogen and deliver numerous health benefits, provided that the premenopausal woman microbiota is capable of converting dietary precursors into enterolignans.


Subject(s)
Gastrointestinal Microbiome/drug effects , Lignans/chemistry , Plant Oils/chemistry , Case-Control Studies , Female , Humans , Pilot Projects , Premenopause
6.
Appl Environ Microbiol ; 85(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30824442

ABSTRACT

Metabolism of protein by gut bacteria is potentially detrimental due to the production of toxic metabolites, such as ammonia, amines, p-cresol, and indole. The consumption of prebiotic carbohydrates results in specific changes in the composition and/or activity of the microbiota that may confer benefits to host well-being and health. Here, we have studied the impact of prebiotics on proteolysis within the gut in vitro Anaerobic stirred batch cultures were inoculated with feces from omnivores (n = 3) and vegetarians (n = 3) and four protein sources (casein, meat, mycoprotein, and soy protein) with and without supplementation by an oligofructose-enriched inulin. Bacterial counts and concentrations of short-chain fatty acids (SCFA), ammonia, phenol, indole, and p-cresol were monitored during fermentation. Addition of the fructan prebiotic Synergy1 increased levels of bifidobacteria (P = 0.000019 and 0.000013 for omnivores and vegetarians, respectively). Branched-chain fatty acids (BCFA) were significantly lower in fermenters with vegetarians' feces (P = 0.004), reduced further by prebiotic treatment. Ammonia production was lower with Synergy1. Bacterial adaptation to different dietary protein sources was observed through different patterns of ammonia production between vegetarians and omnivores. In volunteer samples with high baseline levels of phenol, indole, p-cresol, and skatole, Synergy1 fermentation led to a reduction of these compounds.IMPORTANCE Dietary protein intake is high in Western populations, which could result in potentially harmful metabolites in the gut from proteolysis. In an in vitro fermentation model, the addition of prebiotics reduced the negative consequences of high protein levels. Supplementation with a prebiotic resulted in a reduction of proteolytic metabolites in the model. A difference was seen in protein fermentation between omnivore and vegetarian gut microbiotas: bacteria from vegetarian donors grew more on soy and Quorn than on meat and casein, with reduced ammonia production. Bacteria from vegetarian donors produced less branched-chain fatty acids (BCFA).


Subject(s)
Bacteria/metabolism , Diet , Gastrointestinal Microbiome , Prebiotics/administration & dosage , Adult , Feces/microbiology , Fermentation , Humans , Middle Aged , Proteolysis , Young Adult
7.
J Transl Med ; 16(1): 244, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30176893

ABSTRACT

BACKGROUND: Microbiota and bile acids in the gastrointestinal tract profoundly alter systemic metabolic processes. In obese subjects, gradual weight loss ameliorates adipose tissue inflammation and related systemic changes. We assessed how rapid weight loss due to a very low calorie diet (VLCD) affects the fecal microbiome and fecal bile acid composition, and their interactions with the plasma metabolome and subcutaneous adipose tissue inflammation in obesity. METHODS: We performed a prospective cohort study of VLCD-induced weight loss of 10% in ten grades 2-3 obese postmenopausal women in a metabolic unit. Baseline and post weight loss evaluation included fasting plasma analyzed by mass spectrometry, adipose tissue transcription by RNA sequencing, stool 16S rRNA sequencing for fecal microbiota, fecal bile acids by mass spectrometry, and urinary metabolic phenotyping by 1H-NMR spectroscopy. Outcome measures included mixed model correlations between changes in fecal microbiota and bile acid composition with changes in plasma metabolite and adipose tissue gene expression pathways. RESULTS: Alterations in the urinary metabolic phenotype following VLCD-induced weight loss were consistent with starvation ketosis, protein sparing, and disruptions to the functional status of the gut microbiota. We show that the core microbiome was preserved during VLCD-induced weight loss, but with changes in several groups of bacterial taxa with functional implications. UniFrac analysis showed overall parallel shifts in community structure, corresponding to reduced abundance of the genus Roseburia and increased Christensenellaceae;g__ (unknown genus). Imputed microbial functions showed changes in fat and carbohydrate metabolism. A significant fall in fecal total bile acid concentration and reduced deconjugation and 7-α-dihydroxylation were accompanied by significant changes in several bacterial taxa. Individual bile acids in feces correlated with amino acid, purine, and lipid metabolic pathways in plasma. Furthermore, several fecal bile acids and bacterial species correlated with altered gene expression pathways in adipose tissue. CONCLUSIONS: VLCD dietary intervention in obese women changed the composition of several fecal microbial populations while preserving the core fecal microbiome. Changes in individual microbial taxa and their functions correlated with variations in the plasma metabolome, fecal bile acid composition, and adipose tissue transcriptome. Trial Registration ClinicalTrials.gov NCT01699906, 4-Oct-2012, Retrospectively registered. URL- https://clinicaltrials.gov/ct2/show/NCT01699906.


Subject(s)
Adipose Tissue/metabolism , Bile Acids and Salts/chemistry , Diet, Reducing , Feces/microbiology , Obesity/therapy , Postmenopause , Weight Loss , Adult , Aged , Caloric Restriction , Carbohydrate Metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Inflammation , Ketosis/urine , Metabolomics , Middle Aged , Obesity/microbiology , Phenotype , Prospective Studies , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, RNA
8.
Br J Nutr ; 117(5): 623-634, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28343458

ABSTRACT

The aim of this study was to elucidate the relationship between the urinary metabolic fingerprint and the effects of cocoa and cocoa fibre on body weight, hormone metabolism, intestinal immunity and microbiota composition. To this effect, Wistar rats were fed, for 3 weeks, a diet containing 10 % cocoa (C10) or two other diets with same the proportion of fibres: one based on cocoa fibre (CF) and another containing inulin as a reference (REF) diet. The rats' 24 h urine samples were analysed by an untargeted 1H NMR spectroscopy-based metabonomic approach. Concentrations of faecal IgA and plasma metabolic hormones were also quantified. The C10 diet decreased the intestinal IgA, plasma glucagon-like peptide-1 and glucagon concentrations and increased ghrelin levels compared with those in the REF group. Clear differences were observed between the metabolic profiles from the C10 group and those from the CF group. Urine metabolites derived from cocoa correlated with the cocoa effects on body weight, immunity and the gut microbiota. Overall, cocoa intake alters the host and bacterial metabolism concerning energy and amino acid pathways, leading to a metabolic signature that can be used as a marker for consumption. This metabolic profile correlates with body weight, metabolic hormones, intestinal immunity and microbiota composition.


Subject(s)
Cacao , Diet , Gastrointestinal Microbiome/physiology , Intestines/immunology , Metabolome/physiology , Amino Acids/metabolism , Animals , Body Weight , Cacao/chemistry , Cacao/metabolism , Dietary Fiber/administration & dosage , Energy Metabolism , Feces/chemistry , Female , Ghrelin/blood , Glucagon/blood , Glucagon-Like Peptide 1/blood , Hormones/blood , Immunoglobulin A/analysis , Leptin/blood , Rats , Rats, Wistar , Urine/chemistry
9.
Br J Nutr ; 116(3): 480-6, 2016 08.
Article in English | MEDLINE | ID: mdl-27267934

ABSTRACT

Prebiotic oligosaccharides have the ability to generate important changes in the gut microbiota composition that may confer health benefits to the host. Reducing the impurities in prebiotic mixtures could expand their applications in food industries and improve their selectivity and prebiotic effect on the potential beneficial bacteria such as bifidobacteria and lactobacilli. This study aimed to determine the in vitro potential fermentation properties of a 65 % galacto-oligosaccharide (GOS) content Bimuno® GOS (B-GOS) on gut microbiota composition and their metabolites. Fermentation of 65 % B-GOS was compared with 52 % B-GOS in pH- and volume-controlled dose-response anaerobic batch culture experiments. In total, three different doses (1, 0·5 and 0·33 g equivalent to 0·1, 0·05 and 0·033 g/l) were tested. Changes in the gut microbiota during a time course were identified by fluorescence in situ hybridisation, whereas small molecular weight metabolomics profiles and SCFA were determined by 1H-NMR analysis and GC, respectively. The 65 % B-GOS showed positive modulation of the microbiota composition during the first 8 h of fermentation with all doses. Administration of the specific doses of B-GOS induced a significant increase in acetate as the major SCFA synthesised compared with propionate and butyrate concentrations, but there were no significant differences between substrates. The 65 % B-GOS in syrup format seems to have, in all the analysis, an efficient prebiotic effect. However, the applicability of such changes remains to be shown in an in vivo trial.


Subject(s)
Bacteria/drug effects , Fatty Acids, Volatile/metabolism , Fermentation , Galactose/pharmacology , Gastrointestinal Microbiome/drug effects , Oligosaccharides/pharmacology , Prebiotics , Acetic Acid/metabolism , Bacteria/growth & development , Bacteria/metabolism , Bifidobacterium/drug effects , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Butyric Acid/metabolism , Colon/metabolism , Colon/microbiology , Feces , Humans , Lactobacillus/drug effects , Lactobacillus/growth & development , Lactobacillus/metabolism , Metabolomics , Propionates/metabolism
10.
Appetite ; 98: 142-9, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26706043

ABSTRACT

Activation of free fatty acid receptor (FFAR)2 and FFAR3 via colonic short-chain fatty acids, particularly propionate, are postulated to explain observed inverse associations between dietary fiber intake and body weight. Propionate is reported as the predominant colonic fermentation product from l-rhamnose, a natural monosaccharide that resists digestion and absorption reaching the colon intact, while effects of long-chain inulin on appetite have not been extensively investigated. In this single-blind randomized crossover study, healthy unrestrained eaters (n = 13) ingested 25.5 g/d l-rhamnose, 22.4 g/d inulin or no supplement (control) alongside a standardized breakfast and lunch, following a 6-d run-in to investigate if appetite was inhibited. Postprandial qualitative appetite, breath hydrogen, and plasma glucose, insulin, triglycerides and non-esterified fatty acids were assessed for 420 min, then an ad libitum meal was provided. Significant treatment x time effects were found for postprandial insulin (P = 0.009) and non-esterified fatty acids (P = 0.046) with a significantly lower insulin response for l-rhamnose (P = 0.023) than control. No differences between treatments were found for quantitative and qualitative appetite measures, although significant treatment x time effects for meal desire (P = 0.008) and desire to eat sweet (P = 0.036) were found. Breath hydrogen was significantly higher with inulin (P = 0.001) and l-rhamnose (P = 0.009) than control, indicating colonic fermentation. These findings suggest l-rhamnose may inhibit postprandial insulin secretion, however neither l-rhamnose or inulin influenced appetite.


Subject(s)
Appetite/drug effects , Colon/drug effects , Energy Intake , Insulin/metabolism , Propionates/blood , Rhamnose/administration & dosage , Adolescent , Adult , Blood Glucose/metabolism , Body Mass Index , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Colon/metabolism , Cross-Over Studies , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Dietary Fiber/administration & dosage , Dietary Proteins/administration & dosage , Dietary Supplements , Fatty Acids, Nonesterified/blood , Female , Glucagon-Like Peptide 1/metabolism , Humans , Insulin Resistance , Insulin Secretion , Inulin/administration & dosage , Male , Middle Aged , Peptide YY/metabolism , Postprandial Period/drug effects , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , Single-Blind Method , Waist Circumference , Young Adult
11.
Infect Immun ; 83(6): 2350-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25824834

ABSTRACT

Resistance to the innate defenses of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common colonizer of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent antimicrobial activity. The mechanisms by which S. aureus is able to resist such defenses in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates the efflux of radiolabeled cholic acid both in S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated the survival of S. aureus in an anaerobic three-stage continuous-culture model of the human colon (gut model), which represents different anatomical areas of the large intestine.


Subject(s)
Bacterial Proteins/metabolism , Cholates/metabolism , Colon/physiology , Gene Expression Regulation, Bacterial/physiology , Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Cloning, Molecular , Colon/microbiology , Humans , Models, Biological , Staphylococcus aureus/genetics
12.
Br J Nutr ; 114(8): 1226-36, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26428278

ABSTRACT

The reported inverse association between the intake of plant-based foods and a reduction in the prevalence of colorectal cancer may be partly mediated by interactions between insoluble fibre and (poly)phenols and the intestinal microbiota. In the present study, we assessed the impact of palm date consumption, rich in both polyphenols and fibre, on the growth of colonic microbiota and markers of colon cancer risk in a randomised, controlled, cross-over human intervention study. A total of twenty-two healthy human volunteers were randomly assigned to either a control group (maltodextrin-dextrose, 37·1 g) or an intervention group (seven dates, approximately 50 g). Each arm was of 21 d duration and was separated by a 14-d washout period in a cross-over manner. Changes in the growth of microbiota were assessed by fluorescence in situ hybridisation analysis, whereas SCFA levels were assessed using HPLC. Further, ammonia concentrations, faecal water genotoxicity and anti-proliferation ability were also assessed using different assays, which included cell work and the Comet assay. Accordingly, dietary intakes, anthropometric measurements and bowel movement assessment were also carried out. Although the consumption of dates did not induce significant changes in the growth of select bacterial groups or SCFA, there were significant increases in bowel movements and stool frequency (P<0·01; n 21) and significant reductions in stool ammonia concentration (P<0·05; n 21) after consumption of dates, relative to baseline. Furthermore, date fruit intake significantly reduced genotoxicity in human faecal water relative to control (P<0·01; n 21). Our data indicate that consumption of date fruit may reduce colon cancer risk without inducing changes in the microbiota.


Subject(s)
Diet , Fruit , Intestine, Large/microbiology , Microbiota , Phoeniceae , Adolescent , Adult , Ammonia/analysis , Bacteroides/isolation & purification , Bifidobacterium/isolation & purification , Body Mass Index , Cell Proliferation , Cholesterol/blood , Clostridium/isolation & purification , Colon/microbiology , Colonic Neoplasms/prevention & control , Colony Count, Microbial , Cross-Over Studies , DNA Damage , Dietary Fats/administration & dosage , Dietary Fiber/administration & dosage , Dietary Proteins/administration & dosage , Energy Intake , Enterococcus/isolation & purification , Eubacterium/isolation & purification , Feces/chemistry , Feces/microbiology , Female , HT29 Cells , Humans , In Situ Hybridization, Fluorescence , Lactobacillus/isolation & purification , Male , Middle Aged , Ruminococcus/isolation & purification , Triglycerides/blood , Young Adult
13.
Anaerobe ; 24: 60-5, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24091275

ABSTRACT

Probiotics are currently being investigated for prevention of infections caused by enteric pathogens. The aim of this in vitro study was to evaluate the influence of three single probiotics: Lactobacillus casei NCIMB 30185 (PXN 37), Lactobacillus acidophilus NCIMB 30184 (PXN 35), Bifidobacterium breve NCIMB 30180 (PXN 25) and a probiotic mixture containing the above strains plus twelve other strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera on the survival of Salmonella Typhimurium and Clostridium difficile using pH-controlled anaerobic batch cultures containing mixed faecal bacteria. Changes in relevant bacterial groups and effects of probiotic addition on survival of the two pathogens were assessed over 24 h. Quantitative analysis of bacterial populations revealed that there was a significant increase in lactobacilli and/or bifidobacteria numbers, depending on probiotic addition, compared with the control (no added probiotic). There was also a significant reduction in S. Typhimurium and C. difficile numbers in the presence of certain probiotics compared with controls. Of the probiotic treatments, two single strains namely L. casei NCIMB 30185 (PXN 37), and B. breve NCIMB 30180 (PXN 25) were the most potent in reducing the numbers of S. Typhimurium and C. difficile. In addition, the supplementation with probiotics into the systems influenced some fermentations parameters. Acetate was found in the largest concentrations in all vessels and lactate and formate were generally detected in higher amounts in vessels with probiotic addition compared to controls.


Subject(s)
Antibiosis , Clostridioides difficile/growth & development , Lacticaseibacillus casei/physiology , Lactobacillales/physiology , Probiotics/pharmacology , Salmonella typhimurium/growth & development , Acetates/metabolism , Anaerobiosis , Batch Cell Culture Techniques , Culture Media/chemistry , Formates/metabolism , Humans , Hydrogen-Ion Concentration , Lactates/metabolism
14.
Nanoscale Adv ; 5(23): 6349-6364, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38024319

ABSTRACT

Graphene-based nanoparticles are widely applied in many technology and science sectors, raising concerns about potential health risks. Emerging evidence suggests that graphene-based nanomaterials may interact with microorganisms, both pathogens and commensal bacteria, that dwell in the gut. This review aims to demonstrate the current state of knowledge on the interplay between graphene nanomaterials and the gut microbiome. In this study, we briefly overview nanomaterials, their usage and the characteristics of graphene-based nanoparticles. We present and discuss experimental data from in vitro studies, screening tests on small animals and rodent experiments related to exposure and the effects of graphene nanoparticles on gut microbiota. With this in mind, we highlight the reported crosstalk between graphene nanostructures, the gut microbial community and the host immune system in order to shed light on the perspective to bear on the biological interactions. The studies show that graphene-based material exposure is dosage and time-dependent, and different derivatives present various effects on host bacteria cells. Moreover, the route of graphene exposure might influence a shift in the gut microbiota composition, including the alteration of functions and diversity and abundance of specific phyla or genera. However, the mechanism of graphene-based nanomaterials' influence on gut microbiota is poorly understood. Accordingly, this review emphasises the importance of studies needed to establish the most desirable synthesis methods, types of derivatives, properties, and safety aspects mainly related to the routes of exposure and dosages of graphene-based nanomaterials.

15.
Health Sci Rep ; 6(8): e1525, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37621383

ABSTRACT

Background and Aims: Plant-based diets have gained popularity over the past decade. However, research regarding mental and sleep health benefits of following plant-based diets are conflicting. As there are associations between mental/sleep health and various personality traits, and personality may differ between individuals who follow different diets, in this preliminary study, we examined the associations between mental and sleep health and (i) personality and (ii) dietary identity in individuals who follow vegan and vegetarian diets. Methods: Cross-sectional data on sociodemographic, personality traits, dietarian identity, overall mental health, depression, anxiety, stress, and sleep quality were collected from 57 vegan/vegetarian participants between the ages of 18-40. Results: After controlling for various sociodemographic and lifestyle factors, linear regression models revealed that (i) higher dietarian private regard was a significant predictor of better overall mental health, (ii) lower levels of extraversion and higher levels of empathy predicted depression, (iii) higher levels of neuroticism and empathy predicted anxiety, (iv) higher levels of neuroticism, dietarian centrality, and neuroticism × centrality predicted stress, (v) higher levels of conscientiousness, lower levels of dietarian centrality, but higher levels of personal motivation and dietary strictness, as well as conscientiousness × centrality, conscientiousness × personal motivation, and conscientiousness × strictness predicted better sleep quality. Conclusions: These preliminary findings suggest that not only personality traits, but also dietary identity was indeed related to mental and sleep health in individuals who follow plant-based diets.

16.
Front Microbiol ; 14: 1273861, 2023.
Article in English | MEDLINE | ID: mdl-38075921

ABSTRACT

This study evaluated the effects of dietary supplementation with a postbiotic extract of Bifidobacterium breve BB091109 on pro-inflammatory cytokines levels and markers of endocrine function. A prospective, double-blind, placebo-controlled, randomized, single-centered, parallel study was conducted on a group of 40-55-year-old females. The study included 30 healthy females, divided into two groups: a supplement (n = 20) and a placebo (n = 10) groups. Blood and saliva samples were collected at baseline (wk0), after 4 weeks (wk 4) and 12 weeks (12wk) of daily supplementation (500 mg), and 4 weeks (wk 16) after termination of supplementation. The levels of fasting CRP, IL-6, IL-10, TNF-α, IFN-γ, DHEA, estradiol, estriol, progesterone, cortisol and human growth hormone were analysed. The results revealed a significant effect of the 90-day supplementation with B. breve postbiotic extract on changes in CRP, IL-6 levels, DHEA, estradiol and estriol. In conclusion, the supplementation with the B. breve postbiotic extract improved endocrine function in females over 40 years old and induced protective changes in inflammatory markers. These findings highlight the potential health benefits of this supplementation in promoting hormonal balance and reducing inflammation in this population.

17.
Food Chem Toxicol ; 172: 113558, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36528245

ABSTRACT

Oxidative stress and inflammation lead by dietary oxidised lipids, as oxysterols, have been linked to the loss of intestinal barrier integrity, a crucial event in the initiation and progression of intestinal disorders. In the last decade, probiotic lactobacilli have emerged as an interesting tool to improve intestinal health, thanks to their antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the ability of two commercial probiotic strains of lactobacilli (Lactiplantibacillus plantarum 299v® (DMS 9843) and Lacticaseibacillus casei DG® (CNCMI-1572)), both as live bacteria and intracellular content, to attenuate the oxysterols-induced alteration of intestinal epithelial Caco-2 cell monolayer permeability. Our investigation was focused on the modulation of tight junctions (TJs) proteins, occludin, ZO-1 and JAM-A, in relation to redox-sensitive MAPK p38 activation. Obtained results provided evidence on the ability of the two probiotics to counteract the alteration of monolayer permeability and loss of TJs proteins, at least in part, through the modulation of p38 pathway. The protective action was exerted by live bacteria, whose adhesion to Caco-2 cells was not altered by oxysterols, and bacterial intracellular components equally able to interact with the signaling pathway.


Subject(s)
Oxysterols , Probiotics , Humans , Caco-2 Cells , Lactobacillus , Oxysterols/metabolism , Tight Junctions/metabolism , Epithelial Cells/metabolism , Probiotics/pharmacology , Permeability , Intestinal Mucosa/metabolism
18.
Article in English | MEDLINE | ID: mdl-36721386

ABSTRACT

Cerrado and Pantanal plants can provide fruits with high nutritional value and antioxidants. This study aims to evaluate four fruit flours (from jatobá pulp, cumbaru almond, bocaiuva pulp and bocaiuva almond) and their effects on the gut microbiota in healthy (HD) and post-COVID-19 individuals (PC). An in vitro batch system was carried out, the microbiota was analysed by 16S rRNA amplicon sequencing and the short-chain fatty acids ratio was determined. Furthermore, the effect of jatobá pulp flour oil (JAO) on cell viability, oxidative stress and DNA damage was investigated in a myelo-monocytic cell line. Beyond confirming a microbiota imbalance in PC, we identified flour-specific effects: (i) reduction of Veillonellaceae with jatobá extract in PC samples; (ii) decrease in Akkermansia with jatoba and cumbaru flours; (iii) decreasing trend of Faecalibacterium and Ruminococcus with all flours tested, with the exception of the bocaiuva almond in HD samples for Ruminococcus and (iv) increase in Lactobacillus and Bifidobacterium in PC samples with bocaiuva almond flour. JAO displayed antioxidant properties protecting cells from daunorubicin-induced cytotoxicity, oxidative stress and DNA damage. The promising microbiota-modulating abilities of some flours and the chemopreventive effects of JAO deserve to be further explored in human intervention studies.

19.
NPJ Sci Food ; 7(1): 41, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587110

ABSTRACT

It has been established that the human gut microbiota is central to health, and, consequently, there has been a growing desire to positively modulate its composition and/or function through, for example, the use of fermented foods, prebiotics or probiotics. Here, we compare the relative impact of the daily consumption of an inulin-enriched diet (n = 10), a commercial probiotic-containing fermented milk product (FMP) (n = 10), or a traditional kefir FMP (n = 9), over a 28-day period on the gut microbiome and urine metabolome of healthy human adults. None of the treatments resulted in significant changes to clinical parameters or biomarkers tested. However, shotgun metagenomic analysis revealed that kefir consumption resulted in a significant change in taxonomy, in the form of an increased abundance of the sub-dominant FMP-associated species Lactococcus raffinolactis, which further corresponded to shifts in the urine metabolome. Overall, our results indicated that daily consumption of a single portion of kefir alone resulted in detectable changes to the gut microbiota and metabolome of consumers.

20.
Appl Environ Microbiol ; 78(4): 956-64, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22156412

ABSTRACT

Considering the increase in the consumption of yeasts as human probiotics, the aim of this study was to broadly investigate the beneficial properties of the lactic yeast Kluyveromyces marxianus (formerly Kluyveromyces fragilis) B0399. Several potential probiotic traits of K. marxianus B0399 were investigated by using in vitro assays, including adhesion and immune modulation, and the effect of the administration of 10(7) CFU/day of K. marxianus B0399 on the composition and metabolic activity of the human intestinal microbiota was investigated in a 3-stage continuous-culture system simulating the human colon. We demonstrated that this strain was highly adhesive to human enterocyte-like Caco-2 cells and modulated the immune response, inducing proinflammatory cytokines in peripheral blood mononuclear cells (PBMCs). In the presence of inflammatory stimulation with lipopolysaccharide (LPS), K. marxianus B0399 provoked decreases in the levels of production of proinflammatory cytokines in PBMCs and Caco-2 cells, thus ameliorating the inflammatory response. Furthermore, K. marxianus B0399 impacted the colonic microbiota, increasing the bifidobacterial concentration in the stages of the colonic model system simulating the proximal and transverse colon. The amounts of the short-chain fatty acids acetate and propionate also increased following yeast supplementation. Finally, K. marxianus B0399 was found to induce a decrease of the cytotoxic potential of the culture supernatant from the first stage of the colonic model system. The effects of K. marxianus B0399 on adhesion, immune function, and colonic microbiota demonstrate that this strain possesses a number of beneficial and strain-specific properties desirable for a microorganism considered for application as a probiotic.


Subject(s)
Kluyveromyces/growth & development , Kluyveromyces/immunology , Metagenome , Probiotics/pharmacology , Caco-2 Cells , Cell Adhesion , Cytokines/metabolism , Gastrointestinal Tract/microbiology , Humans , Leukocytes, Mononuclear/immunology , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL