Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nucleic Acids Res ; 52(3): 1173-1187, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38084915

ABSTRACT

Efficient DNA repair and limitation of genome rearrangements rely on crosstalk between different DNA double-strand break (DSB) repair pathways, and their synchronization with the cell cycle. The selection, timing and efficacy of DSB repair pathways are influenced by post-translational modifications of histones and DNA damage repair (DDR) proteins, such as phosphorylation. While the importance of kinases and serine/threonine phosphatases in DDR have been extensively studied, the role of tyrosine phosphatases in DNA repair remains poorly understood. In this study, we have identified EYA4 as the protein phosphatase that dephosphorylates RAD51 on residue Tyr315. Through its Tyr phosphatase activity, EYA4 regulates RAD51 localization, presynaptic filament formation, foci formation, and activity. Thus, it is essential for homologous recombination (HR) at DSBs. DNA binding stimulates EYA4 phosphatase activity. Depletion of EYA4 decreases single-stranded DNA accumulation following DNA damage and impairs HR, while overexpression of EYA4 in cells promotes dephosphorylation and stabilization of RAD51, and thereby nucleoprotein filament formation. Our data have implications for a pathological version of RAD51 in EYA4-overexpressing cancers.


Subject(s)
Rad51 Recombinase , Trans-Activators , DNA , DNA Repair , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Homologous Recombination/genetics , Phosphoprotein Phosphatases/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Tyrosine/genetics , Humans , Trans-Activators/metabolism
2.
Nucleic Acids Res ; 51(20): 11056-11079, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37823600

ABSTRACT

Zinc finger (ZNF) motifs are some of the most frequently occurring domains in the human genome. It was only recently that ZNF proteins emerged as key regulators of genome integrity in mammalian cells. In this study, we report a new role for the Krüppel-type ZNF-containing protein ZNF432 as a novel poly(ADP-ribose) (PAR) reader that regulates the DNA damage response. We show that ZNF432 is recruited to DNA lesions via DNA- and PAR-dependent mechanisms. Remarkably, ZNF432 stimulates PARP-1 activity in vitro and in cellulo. Knockdown of ZNF432 inhibits phospho-DNA-PKcs and increases RAD51 foci formation following irradiation. Moreover, purified ZNF432 preferentially binds single-stranded DNA and impairs EXO1-mediated DNA resection. Consequently, the loss of ZNF432 in a cellular system leads to resistance to PARP inhibitors while its overexpression results in sensitivity. Taken together, our results support the emerging concept that ZNF-containing proteins can modulate PARylation, which can be embodied by the pivotal role of ZNF432 to finely balance the outcome of PARPi response by regulating homologous recombination.


Subject(s)
Poly ADP Ribosylation , Poly Adenosine Diphosphate Ribose , Humans , DNA/genetics , DNA/metabolism , DNA Damage , DNA Repair , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly Adenosine Diphosphate Ribose/metabolism
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33692124

ABSTRACT

Zinc finger (ZnF) proteins represent one of the largest families of human proteins, although most remain uncharacterized. Given that numerous ZnF proteins are able to interact with DNA and poly(ADP ribose), there is growing interest in understanding their mechanism of action in the maintenance of genome integrity. We now report that the ZnF protein E4F transcription factor 1 (E4F1) is an actor in DNA repair. Indeed, E4F1 is rapidly recruited, in a poly(ADP ribose) polymerase (PARP)-dependent manner, to DNA breaks and promotes ATR/CHK1 signaling, DNA-end resection, and subsequent homologous recombination. Moreover, we identify E4F1 as a regulator of the ATP-dependent chromatin remodeling SWI/SNF complex in DNA repair. E4F1 binds to the catalytic subunit BRG1/SMARCA4 and together with PARP-1 mediates its recruitment to DNA lesions. We also report that a proportion of human breast cancers show amplification and overexpression of E4F1 or BRG1 that are mutually exclusive with BRCA1/2 alterations. Together, these results reveal a function of E4F1 in the DNA damage response that orchestrates proper signaling and repair of double-strand breaks and document a molecular mechanism for its essential role in maintaining genome integrity and cell survival.


Subject(s)
DNA Breaks, Double-Stranded , DNA Helicases/metabolism , DNA Repair , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Breast Neoplasms/genetics , Cell Proliferation , Cell Survival , Chromatin Assembly and Disassembly , DNA Damage , Gene Expression Regulation, Neoplastic , Gene Silencing , Homologous Recombination , Humans , Protein Binding , Repressor Proteins/deficiency , Signal Transduction , Ubiquitin-Protein Ligases/deficiency
4.
EMBO J ; 38(15): e100986, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31267554

ABSTRACT

Aberrant transcription-associated RNA:DNA hybrid (R-loop) formation often causes catastrophic conflicts during replication, resulting in DNA double-strand breaks and genomic instability. Preventing such conflicts requires hybrid dissolution by helicases and/or RNase H. Little is known about how such helicases are regulated. Herein, we identify DDX5, an RGG/RG motif-containing DEAD-box family RNA helicase, as crucial player in R-loop resolution. In vitro, recombinant DDX5 resolves R-loops in an ATP-dependent manner, leading to R-loop degradation by the XRN2 exoribonuclease. DDX5-deficient cells accumulate R-loops at loci with propensity to form such structures based on RNA:DNA immunoprecipitation (DRIP)-qPCR, causing spontaneous DNA double-strand breaks and hypersensitivity to replication stress. DDX5 associates with XRN2 and resolves R-loops at transcriptional termination regions downstream of poly(A) sites, to facilitate RNA polymerase II release associated with transcriptional termination. Protein arginine methyltransferase 5 (PRMT5) binds and methylates DDX5 at its RGG/RG motif. This motif is required for DDX5 interaction with XRN2 and repression of cellular R-loops, but not essential for DDX5 helicase enzymatic activity. PRMT5-deficient cells accumulate R-loops, resulting in increased formation of γH2AX foci. Our findings exemplify a mechanism by which an RNA helicase is modulated by arginine methylation to resolve R-loops, and its potential role in regulating transcription.


Subject(s)
DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , RNA/chemistry , Amino Acid Motifs , Arginine/metabolism , Cell Line , DNA/metabolism , Exoribonucleases/metabolism , HEK293 Cells , Humans , Methylation , Protein-Arginine N-Methyltransferases/genetics , RNA/metabolism , RNA Polymerase II/metabolism
5.
Nucleic Acids Res ; 49(22): 12836-12854, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34871413

ABSTRACT

Cockayne syndrome group B (CSB) protein has been implicated in the repair of a variety of DNA lesions that induce replication stress. However, little is known about its role at stalled replication forks. Here, we report that CSB is recruited to stalled forks in a manner dependent upon its T1031 phosphorylation by CDK. While dispensable for MRE11 association with stalled forks in wild-type cells, CSB is required for further accumulation of MRE11 at stalled forks in BRCA1/2-deficient cells. CSB promotes MRE11-mediated fork degradation in BRCA1/2-deficient cells. CSB possesses an intrinsic ATP-dependent fork reversal activity in vitro, which is activated upon removal of its N-terminal region that is known to autoinhibit CSB's ATPase domain. CSB functions similarly to fork reversal factors SMARCAL1, ZRANB3 and HLTF to regulate slowdown in fork progression upon exposure to replication stress, indicative of a role of CSB in fork reversal in vivo. Furthermore, CSB not only acts epistatically with MRE11 to facilitate fork restart but also promotes RAD52-mediated break-induced replication repair of double-strand breaks arising from cleavage of stalled forks by MUS81 in BRCA1/2-deficient cells. Loss of CSB exacerbates chemosensitivity in BRCA1/2-deficient cells, underscoring an important role of CSB in the treatment of cancer lacking functional BRCA1/2.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Helicases/genetics , DNA Repair Enzymes/genetics , DNA Repair , DNA/genetics , MRE11 Homologue Protein/genetics , Poly-ADP-Ribose Binding Proteins/genetics , BRCA1 Protein/deficiency , BRCA1 Protein/metabolism , BRCA2 Protein/deficiency , BRCA2 Protein/metabolism , Cell Line , Cell Line, Tumor , DNA/chemistry , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , DNA Replication/genetics , HCT116 Cells , HEK293 Cells , Humans , MRE11 Homologue Protein/metabolism , Mutation , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Interference
6.
EMBO J ; 37(18)2018 09 14.
Article in English | MEDLINE | ID: mdl-30154076

ABSTRACT

DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , Mad2 Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , G2 Phase/genetics , HEK293 Cells , Humans , Mad2 Proteins/genetics , S Phase/genetics , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
7.
Nucleic Acids Res ; 47(20): 10678-10692, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31501894

ABSTRACT

CSB, a member of the SWI2/SNF2 superfamily, has been implicated in evicting histones to promote the DSB pathway choice towards homologous recombination (HR) repair. However, how CSB promotes HR repair remains poorly characterized. Here we demonstrate that CSB interacts with both MRE11/RAD50/NBS1 (MRN) and BRCA1 in a cell cycle regulated manner, with the former requiring its WHD and occurring predominantly in early S phase. CSB interacts with the BRCT domain of BRCA1 and this interaction is regulated by CDK-dependent phosphorylation of CSB on S1276. The CSB-BRCA1 interaction, which peaks in late S/G2 phase, is responsible for mediating the interaction of CSB with the BRCA1-C complex consisting of BRCA1, MRN and CtIP. While dispensable for histone eviction at DSBs, CSB phosphorylation on S1276 is necessary to promote efficient MRN- and CtIP-mediated DNA end resection, thereby restricting NHEJ and enforcing the DSB repair pathway choice to HR. CSB phosphorylation on S1276 is also necessary to support cell survival in response to DNA damage-inducing agents. These results altogether suggest that CSB interacts with BRCA1 to promote DNA end resection for HR repair and that although prerequisite, CSB-mediated histone eviction alone is insufficient to promote the pathway choice towards HR.


Subject(s)
BRCA1 Protein/metabolism , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , DNA Repair , Endodeoxyribonucleases/metabolism , G2 Phase , Multiprotein Complexes/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , S Phase , BRCA1 Protein/chemistry , Camptothecin/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Chromatin Assembly and Disassembly/drug effects , DNA Breaks, Double-Stranded/drug effects , DNA Helicases/chemistry , DNA Repair/drug effects , DNA Repair Enzymes/chemistry , G2 Phase/drug effects , Humans , Phosphorylation/drug effects , Phosphoserine/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Poly-ADP-Ribose Binding Proteins/chemistry , Protein Binding/drug effects , Protein Domains , S Phase/drug effects , Telomere-Binding Proteins/metabolism
8.
Nucleic Acids Res ; 47(14): 7532-7547, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31219578

ABSTRACT

Fanconi Anemia (FA) clinical phenotypes are heterogenous and rely on a mutation in one of the 22 FANC genes (FANCA-W) involved in a common interstrand DNA crosslink-repair pathway. A critical step in the activation of FA pathway is the monoubiquitination of FANCD2 and its binding partner FANCI. To better address the clinical phenotype associated with FANCI and the epistatic relationship with FANCD2, we created the first conditional inactivation model for FANCI in mouse. Fanci -/- mice displayed typical FA features such as delayed development in utero, microphtalmia, cellular sensitivity to mitomycin C, occasional limb abnormalities and hematological deficiencies. Interestingly, the deletion of Fanci leads to a strong meiotic phenotype and severe hypogonadism. FANCI was localized in spermatocytes and spermatids and in the nucleus of oocytes. Both FANCI and FANCD2 proteins co-localized with RPA along meiotic chromosomes, albeit at different levels. Consistent with a role in meiotic recombination, FANCI interacted with RAD51 and stimulated D-loop formation, unlike FANCD2. The double knockout Fanci-/- Fancd2-/- also showed epistatic relationship for hematological defects while being not epistatic with respect to generating viable mice in crosses of double heterozygotes. Collectively, this study highlights common and distinct functions of FANCI and FANCD2 during mouse development, meiotic recombination and hematopoiesis.


Subject(s)
DNA Repair , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia/genetics , Animals , Cells, Cultured , Disease Models, Animal , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Female , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Oocytes/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Spermatocytes/metabolism
9.
Nucleic Acids Res ; 47(20): 10662-10677, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31586400

ABSTRACT

While biallelic mutations in the PALB2 tumor suppressor cause Fanconi anemia subtype FA-N, monoallelic mutations predispose to breast and familial pancreatic cancer. Although hundreds of missense variants in PALB2 have been identified in patients to date, only a few have clear functional and clinical relevance. Herein, we investigate the effects of 44 PALB2 variants of uncertain significance found in breast cancer patients and provide detailed analysis by systematic functional assays. Our comprehensive functional analysis reveals two hotspots for potentially deleterious variations within PALB2, one at each terminus. PALB2 N-terminus variants p.P8L [c.23C>T], p.Y28C [c.83A>G], and p.R37H [c.110G>A] compromised PALB2-mediated homologous recombination. At the C-terminus, PALB2 variants p.L947F [c.2841G>T], p.L947S [c.2840T>C], and most strikingly p.T1030I [c.3089C>T] and p.W1140G [c.3418T>C], stood out with pronounced PARP inhibitor sensitivity and cytoplasmic accumulation in addition to marked defects in recruitment to DNA damage sites, interaction with BRCA2 and homologous recombination. Altogether, our findings show that a combination of functional assays is necessary to assess the impact of germline missense variants on PALB2 function, in order to guide proper classification of their deleteriousness.


Subject(s)
Breast Neoplasms/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Mutation, Missense/genetics , Cell Line, Tumor , Computer Simulation , DNA Damage , Female , Genetic Loci , Homologous Recombination/genetics , Humans , Kinetics , Rad51 Recombinase/metabolism , Reproducibility of Results
10.
Nucleic Acids Res ; 45(14): 8341-8357, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28666371

ABSTRACT

Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway.


Subject(s)
DNA-Binding Proteins/genetics , DNA/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Nuclear Localization Signals/genetics , Amino Acid Sequence , Binding Sites/genetics , Cell Line, Tumor , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , DNA/metabolism , DNA Damage , DNA Repair , DNA-Binding Proteins/metabolism , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group D2 Protein/metabolism , HEK293 Cells , HeLa Cells , Humans , Immunoblotting , Lysine/genetics , Lysine/metabolism , Microscopy, Fluorescence , Mutation , Protein Binding , RNA Interference , Signal Transduction/genetics , Ubiquitination
11.
Nucleic Acids Res ; 45(5): 2644-2657, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28158555

ABSTRACT

One typical mechanism to promote genomic instability, a hallmark of cancer, is to inactivate tumor suppressors, such as PALB2. It has recently been reported that mutations in PALB2 increase the risk of breast cancer by 8-9-fold by age 40 and the life time risk is ∼3-4-fold. To date, predicting the functional consequences of PALB2 mutations has been challenging as they lead to different cancer risks. Here, we performed a structure-function analysis of PALB2, using PALB2 truncated mutants (R170fs, L531fs, Q775X and W1038X), and uncovered a new mechanism by which cancer cells could drive genomic instability. Remarkably, the PALB2 W1038X mutant, harboring a mutation in its C-terminal domain, is still proficient in stimulating RAD51-mediated recombination in vitro, although it is unusually localized to the cytoplasm. After further investigation, we identified a hidden NES within the WD40 domain of PALB2 and found that the W1038X truncation leads to the exposure of this NES to CRM1, an export protein. This concept was also confirmed with another WD40-containing protein, RBBP4. Consequently, our studies reveal an unreported mechanism linking the nucleocytoplasmic translocation of PALB2 mutants to cancer formation.


Subject(s)
Mutation , Neoplasms/genetics , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics , Cytoplasm/metabolism , DNA/metabolism , Fanconi Anemia Complementation Group N Protein , HEK293 Cells , Humans , Karyopherins/metabolism , Nuclear Export Signals , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Rad51 Recombinase/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Sequence Deletion , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , WD40 Repeats , Exportin 1 Protein
12.
Nucleic Acids Res ; 44(22): 10879-10897, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27924011

ABSTRACT

APRIN (PDS5 cohesin associated factor B) interacts with both the cohesin complex and the BRCA2 tumor suppressor. How APRIN influences cohesion and DNA repair processes is not well understood. Here, we show that APRIN is recruited to DNA damage sites. We find that APRIN interacts directly with RAD51, PALB2 and BRCA2. APRIN stimulates RAD51-mediated DNA strand invasion. APRIN also binds DNA with an affinity for D-loop structures and single-strand (ss) DNA. APRIN is a new homologous recombination (HR) mediator as it counteracts the RPA inhibitory effect on RAD51 loading to ssDNA. We show that APRIN strongly improves the annealing of complementary-strand DNA and that it can stimulate this process in synergy with BRCA2. Unlike cohesin constituents, its depletion has no impact on class switch recombination, supporting a specific role for this protein in HR. Furthermore, we show that low APRIN expression levels correlate with a better survival in ovarian cancer patients and that APRIN depletion sensitizes cells to the PARP inhibitor Olaparib in xenografted zebrafish. Our findings establish APRIN as an important and specific actor of HR, with cohesin-independent functions.


Subject(s)
Biomarkers, Tumor/physiology , DNA-Binding Proteins/physiology , Ovarian Neoplasms/metabolism , Squamous Intraepithelial Lesions of the Cervix/metabolism , Transcription Factors/physiology , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Agents/pharmacology , BRCA2 Protein/metabolism , Benzimidazoles/pharmacology , Biomarkers, Tumor/chemistry , Cell Line, Tumor , DNA Damage , DNA-Binding Proteins/chemistry , Drug Resistance, Neoplasm , Fanconi Anemia Complementation Group N Protein , Female , Humans , Kaplan-Meier Estimate , Middle Aged , Nuclear Proteins/metabolism , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/mortality , Phthalazines/pharmacology , Piperazines/pharmacology , Protein Binding , Protein Transport , ROC Curve , Rad51 Recombinase/metabolism , Recombinational DNA Repair , Squamous Intraepithelial Lesions of the Cervix/diagnosis , Squamous Intraepithelial Lesions of the Cervix/drug therapy , Squamous Intraepithelial Lesions of the Cervix/mortality , Transcription Factors/chemistry , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays , Zebrafish
13.
J Biol Chem ; 291(43): 22769-22780, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27590341

ABSTRACT

Base excision repair is initiated by DNA glycosylases that recognize specific altered bases. DNA glycosylases for oxidized bases carry both a glycosylase activity that removes the faulty base and an apyrimidinic/apurinic lyase activity that introduces a single-strand DNA incision. In particular, the CUT domains within the CUX1 and CUX2 proteins were recently shown to interact with the 8-oxoguanine (8-oxoG) DNA glycosylase and stimulate its enzymatic activities. SATB1, which contains two CUT domains, was originally characterized as a T cell-specific genome organizer whose aberrant overexpression in breast cancer can promote tumor progression. Here we investigated the involvement of SATB1 in DNA repair. SATB1 knockdown caused a delay in DNA repair following exposure to H2O2, an increase in OGG1-sensitive oxidized bases within genomic DNA, and a decrease in 8-oxoG cleavage activity in cell extracts. In parallel, we observed an increase in phospho-CHK1 and γ-H2AX levels and a decrease in DNA synthesis. Conversely, ectopic expression of SATB1 accelerated DNA repair and reduced the levels of oxidized bases in genomic DNA. Moreover, an enhanced GFP-SATB1 fusion protein was rapidly recruited to laser microirradiation-induced DNA damage. Using purified proteins, we showed that SATB1 interacts directly with OGG1, increases its binding to 8-oxoG-containing DNA, promotes Schiff base formation, and stimulates its glycosylase and apyrimidinic/apurinic lyase enzymatic activities. Structure/function analysis demonstrated that CUT domains, but not the homeodomain, are responsible for the stimulation of OGG1. Together, these results identify another CUT domain protein that functions both as a transcription factor and an accessory factor in base excision repair.


Subject(s)
DNA Damage , DNA Glycosylases/metabolism , DNA Repair , Matrix Attachment Region Binding Proteins/metabolism , DNA Glycosylases/chemistry , DNA Glycosylases/genetics , Gene Knockdown Techniques , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hydrogen Peroxide/pharmacology , Jurkat Cells , Matrix Attachment Region Binding Proteins/chemistry , Matrix Attachment Region Binding Proteins/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , Structure-Activity Relationship , Transcription Factors
14.
J Cell Sci ; 126(Pt 1): 348-59, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23108668

ABSTRACT

The interplay between homologous DNA recombination and mitotic progression is poorly understood. The five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) are key enzymes for DNA double-strand break repair. In our search for specific functions of the various RAD51 paralogs, we found that inhibition of XRCC3 elicits checkpoint defects, while inhibition of RAD51B or RAD51C induces G2/M cell cycle arrest in HeLa cells. Using live-cell microscopy we show that in XRCC3-knockdown cells the spindle assembly checkpoint persists and there is a higher frequency of chromosome misalignments, anaphase bridges, and aneuploidy. We observed centrosome defects in the absence of XRCC3. While RAD51B and RAD51C act early in homologous recombination, XRCC3 functions jointly with GEN1 later in the pathway at the stage of Holliday junction resolution. Our data demonstrate that Holliday junction resolution has critical functions for preventing aberrant mitosis and aneuploidy in mitotic cells.


Subject(s)
Aneuploidy , DNA-Binding Proteins/metabolism , Blotting, Western , DNA, Cruciform/genetics , DNA-Binding Proteins/genetics , Flow Cytometry , Fluorescent Antibody Technique , HeLa Cells , Holliday Junction Resolvases/genetics , Holliday Junction Resolvases/metabolism , Humans , Mitosis/genetics , RNA Interference
15.
J Virol ; 87(9): 5089-105, 2013 May.
Article in English | MEDLINE | ID: mdl-23427159

ABSTRACT

HIV-1 proteins are synthesized from a single transcript in an unspliced form or following splicing, but the existence of an antisense protein (ASP) expressed from an antisense polyadenylated transcript has been suggested. Difficulties linked to the detection of this protein in mammalian cells led us to codon optimize its cDNA. Codon-optimized ASP was indeed efficiently detected in various transfected cell lines following flow cytometry and confocal microscopy analyses. Western blot analyses also led to the detection of optimized ASP in transfected cells but also provided evidence of its instability and high multimerization potential. ASP was mainly distributed in the cytoplasm in a punctate manner, which was reminiscent of autophagosomes. In agreement with this observation, a significant increase in ASP-positive cells and loss of its punctate distribution was observed in transfected cells when autophagy was inhibited at early steps. Induction of autophagy was confirmed by Western blot analyses that showed an ASP-mediated increase in levels of LC3b-II and Beclin 1, as well as colocalization and interaction between ASP and LC3. Interestingly, Myc-tagged ASP was detected in the context of proviral DNA following autophagy inhibition with a concomitant increase in the level and punctate distribution of LC3b-II. Finally, 3-methyladenine treatment of transfected or infected U937 cells decreased extracellular p24 levels in wild-type proviral DNA and to a much lesser extent in ASP-mutated proviral DNA. This study provides the first detection of ASP in mammalian cells by Western blotting. ASP-induced autophagy might explain the inherent difficulty in detecting this viral protein and might justify its presumed low abundance in infected cells.


Subject(s)
Autophagy , HIV Infections/physiopathology , HIV Infections/virology , HIV-1/genetics , HIV-1/metabolism , RNA, Viral/genetics , Viral Proteins/metabolism , Amino Acid Sequence , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Beclin-1 , HIV Infections/genetics , HIV Infections/metabolism , HIV-1/isolation & purification , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Molecular Sequence Data , RNA, Viral/metabolism , Sequence Alignment , Viral Proteins/chemistry , Viral Proteins/genetics
16.
Nucleic Acids Res ; 40(14): 6570-84, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22505581

ABSTRACT

In most organisms, the primary function of homologous recombination (HR) is to allow genome protection by the faithful repair of DNA double-strand breaks. The vital step of HR is the search for sequence homology, mediated by the RAD51 recombinase, which is stimulated further by proteins mediators such as the tumor suppressor BRCA2. The biochemical interplay between RAD51 and BRCA2 is unknown in Leishmania or Trypanosoma. Here we show that the Leishmania infantum BRCA2 protein possesses several critical features important for the regulation of DNA recombination at the genetic and biochemical level. A BRCA2 null mutant, generated by gene disruption, displayed genomic instability and gene-targeting defects. Furthermore, cytological studies show that LiRAD51 can no longer localize to the nucleus in this mutant. The Leishmania RAD51 and BRCA2 interact together and the purified proteins bind single-strand DNA. Remarkably, LiBRCA2 is a recombination mediator that stimulates the invasion of a resected DNA double-strand break in an undamaged template by LiRAD51 to form a D-loop structure. Collectively, our data show that LiBRCA2 and LiRAD51 promote HR at the genetic and biochemical level in L. infantum, the causative agent of visceral leishmaniasis.


Subject(s)
BRCA2 Protein/metabolism , Homologous Recombination , Leishmania infantum/genetics , Protozoan Proteins/metabolism , Rad51 Recombinase/metabolism , BRCA2 Protein/analysis , BRCA2 Protein/genetics , Computational Biology , DNA/metabolism , DNA Damage , Gene Silencing , Genes, BRCA2 , Leishmania infantum/metabolism , Phenotype , Protein Binding , Protozoan Proteins/analysis , Protozoan Proteins/genetics
17.
EMBO J ; 28(16): 2400-13, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-19609304

ABSTRACT

Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross-links. It was reported earlier that FANCD2 co-localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid-S to G2 phase within sites containing single-stranded DNA (ssDNA) intermediates, or at sites of DNA damage, such as those created by restriction endonucleases and laser irradiation. Purified FANCD2, a ring-like particle by electron microscopy, preferentially bound ssDNA over various DNA substrates. Inhibition of MRE11 nuclease activity by Mirin decreased the number of FANCD2 foci formed in vivo. We propose that FANCD2 binds to ssDNA arising from MRE11-processed DNA double-strand breaks. Our data establish MRN as a crucial regulator of FANCD2 stability and function in the DNA damage response.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Breaks, Double-Stranded , DNA Repair Enzymes/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Nuclear Proteins/metabolism , Acid Anhydride Hydrolases , Cell Cycle Proteins/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Down-Regulation , Fanconi Anemia Complementation Group D2 Protein/analysis , Fanconi Anemia Complementation Group D2 Protein/genetics , HeLa Cells , Humans , MRE11 Homologue Protein , Microscopy, Electron , Nuclear Proteins/genetics , Protein Binding , Protein Stability , RNA, Small Interfering/genetics
18.
Nat Commun ; 14(1): 381, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693839

ABSTRACT

Fanconi Anemia (FA) is a rare, genome instability-associated disease characterized by a deficiency in repairing DNA crosslinks, which are known to perturb several cellular processes, including DNA transcription, replication, and repair. Formaldehyde, a by-product of metabolism, is thought to drive FA by generating DNA interstrand crosslinks (ICLs) and DNA-protein crosslinks (DPCs). However, the impact of formaldehyde on global cellular pathways has not been investigated thoroughly. Herein, using a pangenomic CRISPR-Cas9 screen, we identify EXO1 as a critical regulator of formaldehyde-induced DNA lesions. We show that EXO1 knockout cell lines exhibit formaldehyde sensitivity leading to the accumulation of replicative stress, DNA double-strand breaks, and quadriradial chromosomes, a typical feature of FA. After formaldehyde exposure, EXO1 is recruited to chromatin, protects DNA replication forks from degradation, and functions in parallel with the FA pathway to promote cell survival. In vitro, EXO1-mediated exonuclease activity is proficient in removing DPCs. Collectively, we show that EXO1 limits replication stress and DNA damage to counteract formaldehyde-induced genome instability.


Subject(s)
CRISPR-Cas Systems , Drug Tolerance , Exodeoxyribonucleases , Fanconi Anemia , Formaldehyde , Humans , DNA , DNA Damage/drug effects , DNA Damage/genetics , DNA Repair/drug effects , DNA Repair/genetics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Replication/drug effects , DNA Replication/genetics , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Fanconi Anemia/chemically induced , Fanconi Anemia/genetics , Formaldehyde/toxicity , Genomic Instability/drug effects , Genomic Instability/genetics , Drug Tolerance/genetics
19.
Sci Adv ; 9(32): eadf4082, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37556550

ABSTRACT

Interstrand DNA cross-links (ICLs) represent complex lesions that compromise genomic stability. Several pathways have been involved in ICL repair, but the extent of factors involved in the resolution of ICL-induced DNA double-strand breaks (DSBs) remains poorly defined. Using CRISPR-based genomics, we identified FIGNL1 interacting regulator of recombination and mitosis (FIRRM) as a sensitizer of the ICL-inducing agent mafosfamide. Mechanistically, we showed that FIRRM, like its interactor Fidgetin like 1 (FIGNL1), contributes to the resolution of RAD51 foci at ICL-induced DSBs. While the stability of FIGNL1 and FIRRM is interdependent, expression of a mutant of FIRRM (∆WCF), which stabilizes the protein in the absence of FIGNL1, allows the resolution of RAD51 foci and cell survival, suggesting that FIRRM has FIGNL1-independent function during DNA repair. In line with this model, FIRRM binds preferentially single-stranded DNA in vitro, raising the possibility that it directly contributes to RAD51 disassembly by interacting with DNA. Together, our findings establish FIRRM as a promoting factor of ICL repair.


Subject(s)
DNA Repair , Rad51 Recombinase , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Proteins/genetics , DNA/genetics , Mitosis
20.
J Proteome Res ; 10(3): 1216-27, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21210717

ABSTRACT

Werner syndrome (WS) is characterized by the premature onset of several age-associated pathologies. The protein defective in WS patients (WRN) is a helicase/exonuclease involved in DNA repair, replication, telomere maintenance, and transcription. Here, we present the results of a large-scale proteome analysis to determine protein partners of WRN. We expressed fluorescent tagged-WRN (eYFP-WRN) in human 293 embryonic kidney cells and detected interacting proteins by co-immunoprecipitation from cell extract. We identified by mass spectrometry 220 nuclear proteins that complexed with WRN. This number was reduced to 40 when broad-spectrum nucleases were added to the lysate. We consider these 40 proteins as directly interacting with WRN. Some of these proteins have previously been shown to interact with WRN, whereas most are new partners. Among the top 15 hits, we find the new interactors TMPO, HNRNPU, RPS3, RALY, RPS9 DDX21, and HNRNPM. These proteins are likely important components in understanding the function of WRN in preventing premature aging and deserve further investigation. We have confirmed endogenous WRN interaction with endogenous RPS3, a ribosomal protein with endonuclease activities involved in oxidative DNA damage recognition. Our results suggest that the use of nucleases during cell lysis severely restricts interacting protein partners and thus enhances specificity.


Subject(s)
Deoxyribonucleases/metabolism , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Proteome/analysis , RecQ Helicases/chemistry , RecQ Helicases/metabolism , Animals , Chromatography, Liquid/methods , Exodeoxyribonucleases/genetics , HEK293 Cells , HeLa Cells , Humans , Protein Binding , RecQ Helicases/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Tandem Mass Spectrometry/methods , Werner Syndrome/pathology , Werner Syndrome/physiopathology , Werner Syndrome Helicase
SELECTION OF CITATIONS
SEARCH DETAIL