Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Pharm Res ; 37(3): 61, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32124083

ABSTRACT

PURPOSE: Cyclocreatine, a creatine analog, is a candidate drug for treating patients with cerebral creatine deficiency syndromes (CCDSs) caused by creatine transporter (CRT, SLC6A8) deficiency, which reduces brain creatine level. The purpose of this study was to clarify the characteristics of cyclocreatine transport in HEK293 cells, which highly express endogenous CRT, in hCMEC/D3 cells, a human blood-brain barrier (BBB) model, and in CCDSs patient-derived fibroblasts with CRT mutations. METHODS: Cells were incubated at 37°C with [14C]cyclocreatine (9 µM) and [14C]creatine (9 µM) for specified periods of times in the presence or absence of inhibitors, while the siRNAs were transfected by lipofection. Protein expression and mRNA expression were quantified using targeted proteomics and quantitative PCR, respectively. RESULTS: [14C]Cyclocreatine was taken up by HEK293 cells in a time-dependent manner, while exhibiting saturable kinetics. The inhibition and siRNA knockdown studies demonstrated that the uptake of [14C]cyclocreatine by both HEK293 and hCMEC/D3 cells was mediated predominantly by CRT as well as [14C]creatine. In addition, uptake of [14C]cyclocreatine and [14C]creatine by the CCDSs patient-derived fibroblasts was found to be largely reduced. CONCLUSION: The present study suggests that cyclocreatine is a CRT substrate, where CRT is the predominant contributor to influx of cyclocreatine into the brain at the BBB. Our findings provide vital insights for the purposes of treating CCDSs patients using cyclocreatine.


Subject(s)
Blood-Brain Barrier/metabolism , Creatine/deficiency , Creatinine/analogs & derivatives , Fibroblasts/metabolism , Membrane Transport Proteins/metabolism , Biological Transport , Blood-Brain Barrier/cytology , Cell Line , Cells, Cultured , Creatine/metabolism , Creatinine/metabolism , Creatinine/pharmacokinetics , HEK293 Cells , Humans
2.
J Neurochem ; 150(4): 385-401, 2019 08.
Article in English | MEDLINE | ID: mdl-31091338

ABSTRACT

Decreased levels of docosahexaenoic acid (DHA), an endogenous neuroprotective compound, in the brain are associated with the development of Alzheimer's disease (AD). We previously showed that DHA is a substrate of fatty acid transport protein 1 (FATP1/SLC27A1), and FATP1 is localized at the abluminal membrane of brain capillary endothelial cells. We hypothesized that amyloid ß (Aß) decreases FATP1-mediated cellular efflux (i.e. supply to the brain) of DHA at the blood-brain barrier (BBB). Here, we tested this hypothesis using a human cerebral microvascular endothelial cell line, human cerebral microvessel endothelial cells (hCMEC/D3), as a BBB model. The efflux of DHA-d5 by hCMEC/D3 cells increased time-dependently up to 3 min. Knock-down of FATP1 with specific siRNA indicated that FATP1-mediated efflux accounts for 47.0% of this DHA-d5 efflux. In hCMEC/D3 cells treated with Aß25-35 (10 µM/24 h), which we employed as an in vitro model of the BBB in AD, FATP1 protein expression in the plasma membrane was decreased by 96.0%, which was greater than the decrease in the whole-cell lysate, and the DHA-d5 efflux was decreased by 68.3%. Of this 68.3% decrease, 45.1% (47.0 × 0.96) is accounted for by the decrease in FATP1-mediated efflux and the remaining 23.2% is presumably mediated by other mechanism(s). Thus, we have established for the first time that FATP1 is a major contributor to DHA efflux from human brain capillary endothelial cells, and its efflux activity at the abluminal membrane of the cells is blocked by Aß. This may explain the decreased DHA level in the brain of AD patients. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Subject(s)
Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Docosahexaenoic Acids/metabolism , Fatty Acid Transport Proteins/metabolism , Cell Line , Down-Regulation , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans
3.
Mol Pharm ; 16(5): 2162-2171, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30983357

ABSTRACT

Transmembrane (TM) proteins localized at the plasma membrane, such as transporters and receptors, play important roles in regulating the selective permeability of the blood-brain barrier (BBB). The purpose of the present study was to clarify the differences in the expression levels of TM proteins in the plasma membrane between two established human BBB model cell lines, hCMEC/D3 and HBMEC/ciß, in order to assist researchers in selecting the most appropriate cell line for particular purposes. We first confirmed that plasma membranes could be enriched sufficiently for a quantitative proteomics study by using the Plasma Membrane Protein Extraction Kit provided by BioVision with a modified protocol. This method was applied to hCMEC/D3 and HBMEC/ciß cells, and fractions were used for untargeted quantitative proteomics based on sequential window acquisition of all theoretical fragment-ion spectra. In the plasma membrane fractions, 345 TM proteins were quantified, among which 135 showed significant expression differences between the two cell lines. In hCMEC/D3 cells, amino acid transporters SNAT1, SNAT2, SNAT5, ASCT1, CAT1, and LAT1; adenosine 5'-triphosphate-binding cassette transporters P-gp and MRP4; and GLUT1 were more highly expressed. The transferrin receptor expression was also 4.56-fold greater in hCMEC/D3 cells. In contrast, HBMEC/ciß cells expressed greater levels of IgG transporter neonatal Fc receptor, as well as tight-junction proteins PECAM1, JAM1, JAM3, and ESAM. Our results suggest that hCMEC/D3 cells have greater efflux transport, amino acid transport, and transferrin receptor-mediated uptake activities, whereas HBMEC/ciß cells have greater IgG-transport activity and tight-junction integrity.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/blood supply , Cell Membrane/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Membrane Transport Proteins/metabolism , Models, Biological , Cell Membrane Permeability , HEK293 Cells , Humans , Proteomics/methods , Receptors, Transferrin/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/metabolism
4.
Mol Pharm ; 16(3): 1312-1326, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30721081

ABSTRACT

The effect of cannabidiol (CBD), a high-affinity agonist of the transient receptor potential vanilloid-2 (TRPV2) channel, has been poorly investigated in human brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB). TRPV2 expression and its role on Ca2+ cellular dynamics, trans-endothelial electrical resistance (TEER), cell viability and growth, migration, and tubulogenesis were evaluated in human primary cultures of BMEC (hPBMEC) or in the human cerebral microvessel endothelial hCMEC/D3 cell line. Abundant TRPV2 expression was measured in hCMEC/D3 and hPBMEC by qRT-PCR, Western blotting, nontargeted proteomics, and cellular immunofluorescence studies. Intracellular Ca2+ levels were increased by heat and CBD and blocked by the nonspecific TRP antagonist ruthenium red (RR) and the selective TRPV2 inhibitor tranilast (TNL) or by silencing cells with TRPV2 siRNA. CBD dose-dependently induced the hCMEC/D3 cell number (EC50 0.3 ± 0.1 µM), and this effect was fully abolished by TNL or TRPV2 siRNA. A wound healing assay showed that CBD induced cell migration, which was also inhibited by TNL or TRPV2 siRNA. Tubulogenesis of hCMEC/D3 cells in 3D matrigel cultures was significantly increased by 41 and 73% after a 7 or 24 h CBD treatment, respectively, and abolished by TNL. CBD also increased the TEER of hPBMEC monolayers cultured in transwell, and this was blocked by TNL. Our results show that CBD, at extracellular concentrations close to those observed in plasma of patients treated by CBD, induces proliferation, migration, tubulogenesis, and TEER increase in human brain endothelial cells, suggesting CBD might be a potent target for modulating the human BBB.


Subject(s)
Brain Neoplasms/blood supply , Cannabidiol/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Endothelial Cells/metabolism , Microvessels/pathology , TRPV Cation Channels/metabolism , Blood-Brain Barrier/metabolism , Calcium/metabolism , Cannabis/chemistry , Cell Line , Cell Survival/drug effects , Electric Impedance , Hot Temperature , Humans , Plant Extracts/pharmacology , Ruthenium Red/pharmacology , TRPV Cation Channels/antagonists & inhibitors , ortho-Aminobenzoates/pharmacology
5.
J Physiol ; 595(8): 2497-2517, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28075020

ABSTRACT

KEY POINTS: Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. ABSTRACT: The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP-dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier.


Subject(s)
Calcium/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Endothelial Cells/metabolism , Gap Junctions/metabolism , Microvessels/metabolism , Receptor, Adenosine A2B/physiology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cell Line , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Endothelial Cells/drug effects , Gap Junctions/drug effects , Gene Knockdown Techniques , Humans , Microvessels/drug effects
6.
Mol Pain ; 13: 1744806917727625, 2017.
Article in English | MEDLINE | ID: mdl-28814148

ABSTRACT

Background: Blood­nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway. Methods: Using a classical neuropathic pain model, the infraorbital nerve chronic constriction injury (IoN-CCI), we investigated the role of the Wnt/ß-catenin pathway in chronic constriction injury-mediated blood­nerve barrier disruption and in its interactions with the toll-like receptor 4 and Sonic Hedgehog pathways. In the IoN-CCI model versus control, mRNA expression levels and/or immunochemical detection of major Wnt/Sonic Hedgehog pathway (Frizzled-7, vascular endothelial-cadherin, Patched-1 and Gli-1) and/or tight junction proteins (Claudin-1, Claudin-5, and Occludin) readouts were assessed. Vascular permeability was assessed by sodium fluorescein extravasation. Results: IoN-CCI induced early alterations in the vascular endothelial-cadherin/ß-catenin/Frizzled-7 complex, shown to participate in local blood­nerve barrier disruption via a ß-catenin-dependent tight junction protein downregulation. Wnt pathway also mediated a crosstalk between toll-like receptor 4 and Sonic Hedgehog signaling within endoneurial endothelial cells. Nevertheless, preemptive inhibition of Wnt/ß-catenin signaling before IoN-CCI could not prevent the downregulation of key Sonic Hedgehog pathway readouts or the disruption of the infraorbital blood­nerve barrier, suggesting that Sonic Hedgehog pathway inhibition observed following IoN-CCI is an independent event responsible for blood­nerve barrier disruption. Conclusion: A crosstalk between Wnt/ß-catenin- and Sonic Hedgehog-mediated signaling pathways within endoneurial endothelial cells could mediate the chronic disruption of the blood­nerve barrier following IoN-CCI, resulting in increased irreversible endoneurial vascular permeability and neuropathic pain development.


Subject(s)
Blood-Nerve Barrier/metabolism , Endothelial Cells/metabolism , Wnt Signaling Pathway/physiology , Animals , Chronic Disease , Constriction, Pathologic , Hedgehog Proteins/metabolism , Male , Neuralgia/metabolism , Peripheral Nerve Injuries/metabolism , Rats, Sprague-Dawley , Toll-Like Receptor 4/metabolism , beta Catenin/metabolism
7.
Article in English | MEDLINE | ID: mdl-28893794

ABSTRACT

Human immunodeficiency (HIV) infection results in neurocognitive deficits in about one half of infected individuals. Despite systemic effectiveness, restricted antiretroviral penetration across the blood-brain barrier (BBB) is a major limitation in fighting central nervous system (CNS)-localized infection. Drug abuse exacerbates HIV-induced cognitive and pathological CNS changes. This study's purpose was to investigate the effects of the HIV-1 protein Tat and methamphetamine on factors affecting drug penetration across an in vitro BBB model. Factors affecting paracellular and transcellular flux in the presence of Tat and methamphetamine were examined. Transendothelial electrical resistance, ZO-1 expression, and lucifer yellow (a paracellular tracer) flux were aspects of paracellular processes that were examined. Additionally, effects on P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP-1) mRNA (via quantitative PCR [qPCR]) and protein (via immunoblotting) expression were measured; Pgp and MRP-1 are drug efflux proteins. Transporter function was examined after exposure of Tat with or without methamphetamine using the P-gp substrate rhodamine 123 and also using the dual P-gp/MRP-1 substrate and protease inhibitor atazanavir. Tat and methamphetamine elicit complex changes affecting transcellular and paracellular transport processes. Neither Tat nor methamphetamine significantly altered P-gp expression. However, Tat plus methamphetamine exposure significantly increased rhodamine 123 accumulation within brain endothelial cells, suggesting that treatment inhibited or impaired P-gp function. Intracellular accumulation of atazanavir was not significantly altered after Tat or methamphetamine exposure. Atazanavir accumulation was, however, significantly increased by simultaneous inhibition of P-gp and MRP. Collectively, our investigations indicate that Tat and methamphetamine alter aspects of BBB integrity without affecting net flux of paracellular compounds. Tat and methamphetamine may also affect several aspects of transcellular transport.


Subject(s)
Blood-Brain Barrier/metabolism , Methamphetamine/pharmacology , Rhodamines/metabolism , Transendothelial and Transepithelial Migration/drug effects , tat Gene Products, Human Immunodeficiency Virus/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Atazanavir Sulfate/pharmacology , Biological Transport/drug effects , Biological Transport/physiology , Blood-Brain Barrier/drug effects , Cell Line , Cognitive Dysfunction/virology , HIV Infections/pathology , HIV Infections/virology , HIV Protease Inhibitors/pharmacology , HIV-1 , Humans , Multidrug Resistance-Associated Proteins/biosynthesis , Multidrug Resistance-Associated Proteins/genetics , Rhodamines/pharmacology , Transendothelial and Transepithelial Migration/physiology , Zonula Occludens-1 Protein/biosynthesis
8.
J Virol ; 90(16): 7303-7312, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27252538

ABSTRACT

UNLABELLED: Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of a slowly progressive neurodegenerative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). This disease develops upon infiltration of HTLV-1-infected lymphocytes into the central nervous system, mostly the thoracic spinal cord. The central nervous system is normally protected by a physiological structure called the blood-brain barrier (BBB), which consists primarily of a continuous endothelium with tight junctions. In this study, we investigated the role of activated leukocyte cell adhesion molecule (ALCAM/CD166), a member of the immunoglobulin superfamily, in the crossing of the BBB by HTLV-1-infected lymphocytes. We demonstrated that ALCAM is overexpressed on the surface of HTLV-1-infected lymphocytes, both in chronically infected cell lines and in primary infected CD4(+) T lymphocytes. ALCAM overexpression results from the activation of the canonical NF-κB pathway by the viral transactivator Tax. In contrast, staining of spinal cord sections of HAM/TSP patients showed that ALCAM expression is not altered on the BBB endothelium in the context of HTLV-1 infection. ALCAM blockade or downregulation of ALCAM levels significantly reduced the migration of HTLV-1-infected lymphocytes across a monolayer of human BBB endothelial cells. This study suggests a potential role for ALCAM in HAM/TSP pathogenesis. IMPORTANCE: Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of a slowly progressive neurodegenerative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). This disease is the consequence of the infiltration of HTLV-1-infected lymphocytes into the central nervous system (CNS), mostly the thoracic spinal cord. The CNS is normally protected by a physiological structure called the blood-brain barrier (BBB), which consists primarily of a continuous endothelium with tight junctions. The mechanism of migration of lymphocytes into the CNS is unclear. Here, we show that the viral transactivator Tax increases activated leukocyte cell adhesion molecule (ALCAM/CD166) expression. This molecule facilitates the migration of lymphocytes across the BBB endothelium. Targeting this molecule could be of interest in preventing or reducing the development of HAM/TSP.


Subject(s)
Antigens, CD/metabolism , Blood-Brain Barrier , CD4-Positive T-Lymphocytes/physiology , CD4-Positive T-Lymphocytes/virology , Cell Adhesion Molecules, Neuronal/metabolism , Cell Movement , Fetal Proteins/metabolism , Host-Pathogen Interactions , Human T-lymphotropic virus 1/physiology , CD4-Positive T-Lymphocytes/chemistry , Cell Line , Endothelial Cells/chemistry , Gene Products, tax/metabolism , Humans , NF-kappa B/metabolism
9.
J Immunol ; 194(8): 3623-33, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25769924

ABSTRACT

Aicardi-Goutières syndrome (AGS) is a monogenic inflammatory encephalopathy caused by mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, or MDA5. Mutations in those genes affect normal RNA/DNA intracellular metabolism and detection, triggering an autoimmune response with an increase in cerebral IFN-α production by astrocytes. Microangiopathy and vascular disease also contribute to the neuropathology in AGS. In this study, we report that AGS gene silencing of TREX1, SAMHD1, RNASEH2A, and ADAR1 by short hairpin RNAs in human neural stem cell-derived astrocytes, human primary astrocytes, and brain-derived endothelial cells leads to an antiviral status of these cells compared with nontarget short hairpin RNA-treated cells. We observed a distinct activation of the IFN-stimulated gene signature with a substantial increase in the release of proinflammatory cytokines (IL-6) and chemokines (CXCL10 and CCL5). A differential impact of AGS gene silencing was noted; silencing TREX1 gave rise to the most dramatic in both cell types. Our findings fit well with the observation that patients carrying mutations in TREX1 experience an earlier onset and fatal outcome. We provide in the present study, to our knowledge for the first time, insight into how astrocytic and endothelial activation of antiviral status may differentially lead to cerebral pathology, suggesting a rational link between proinflammatory mediators and disease severity in AGS.


Subject(s)
Astrocytes/immunology , Autoimmune Diseases of the Nervous System/immunology , Cytokines/immunology , Endothelial Cells/immunology , Interferon-alpha/immunology , Nervous System Malformations/immunology , Neural Stem Cells/immunology , Adenosine Deaminase/genetics , Adenosine Deaminase/immunology , Astrocytes/pathology , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/mortality , Autoimmune Diseases of the Nervous System/pathology , Cytokines/genetics , Endothelial Cells/pathology , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/immunology , Gene Silencing , HEK293 Cells , Humans , Interferon-alpha/genetics , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/immunology , Mutation , Nervous System Malformations/genetics , Nervous System Malformations/mortality , Nervous System Malformations/pathology , Neural Stem Cells/pathology , Phosphoproteins/genetics , Phosphoproteins/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Ribonuclease H/genetics , Ribonuclease H/immunology , SAM Domain and HD Domain-Containing Protein 1
10.
Cell Mol Life Sci ; 73(24): 4701-4716, 2016 12.
Article in English | MEDLINE | ID: mdl-27376435

ABSTRACT

Methylphenidate (MPH) is an amphetamine-like stimulant commonly prescribed for attention deficit hyperactivity disorder. Despite its widespread use, the cellular/molecular effects of MPH remain elusive. Here, we report a novel direct role of MPH on the regulation of macromolecular flux through human brain endothelial cells (ECs). MPH significantly increased caveolae-mediated transcytosis of horseradish peroxidase through ECs without affecting paracellular permeability. Using FRET-based live cell imaging, together with pharmacological inhibitors and lentiviral-mediated shRNA knockdown, we demonstrate that MPH promoted ROS generation via activation of Rac1-dependent NADPH oxidase (NOX) and c-Src activation at the plasma membrane. c-Src in turn was shown to mediate the phosphorylation of caveolin-1 (Cav1) on Tyr14 leading to enhanced caveolae formation and transendothelial transport. Accordingly, the inhibition of Cav1 phosphorylation by overexpression of a phosphodefective Cav1Y14F mutant or knocking down Cav1 expression abrogated MPH-induced transcytosis. In addition, both vitamin C and inhibition of NOX blocked MPH-triggered vesicular transport. This study, therefore, identifies Rac1/NOX/c-Src-dependent signaling in MPH-induced increase in transendothelial permeability of brain endothelial cell monolayers via caveolae-mediated transcytosis.


Subject(s)
Caveolae/metabolism , Caveolin 1/metabolism , Endothelial Cells/metabolism , Methylphenidate/pharmacology , Reactive Oxygen Species/metabolism , Transcytosis/drug effects , rac1 GTP-Binding Protein/metabolism , src-Family Kinases/metabolism , Biological Transport/drug effects , Brain/cytology , CSK Tyrosine-Protein Kinase , Capillary Permeability/drug effects , Caveolae/drug effects , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Horseradish Peroxidase/metabolism , Humans , Models, Biological , NADPH Oxidases/metabolism , Oxidants/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects , Transport Vesicles/drug effects , Transport Vesicles/metabolism , cdc42 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
11.
Int Immunol ; 27(11): 545-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25957268

ABSTRACT

The MSRV (multiple sclerosis-associated retrovirus) belongs to the human endogenous retrovirus HERV-W family. The envelope protein originating from the MSRV has been found in most patients with multiple sclerosis (MS). This protein (Env-ms) has pro-inflammatory properties for several types of immune cells and could therefore play a role in MS pathogenesis by promoting the leukocyte diapedesis observed in the central nervous system of patients. Our study aims to analyze the effects of Env-ms on the blood-brain barrier (BBB) at a molecular and functional level. We demonstrate that the recombinant MSRV envelope is able to stimulate several inflammatory parameters in a human BBB in vitro model, the HCMEC/D3 brain endothelial cell line. Indeed, Env-ms induces over-expression of ICAM-1, a major mediator of leukocyte adhesion to endothelial cells, in a dose-dependent manner as well as a strong dose-dependent production of the pro-inflammatory cytokines IL-6 and IL-8. Furthermore, using a silencing approach with siRNAs, we show that Env-ms is recognized via the Toll-like receptor 4 receptor, a pattern recognition receptor of innate immunity present on endothelial cells. We also show, using functional assays, that treatment of brain endothelial cells with Env-ms significantly stimulated the adhesion and the transmigration of activated immune cells through a monolayer of endothelial cells. These findings support the hypothesis that MSRV could be involved in the pathogenesis of MS disease or at least in maintenance of inflammatory conditions, thus fueling the auto-immune disorder. MSRV could also play a role in other chronic inflammatory diseases.


Subject(s)
Endogenous Retroviruses , Endothelial Cells/metabolism , Endothelial Cells/virology , Multiple Sclerosis/etiology , Multiple Sclerosis/metabolism , Toll-Like Receptor 4/metabolism , Blood-Brain Barrier/metabolism , Brain/immunology , Brain/metabolism , Cell Adhesion , Cell Line , Cytokines/biosynthesis , Gene Expression , Gene Knockdown Techniques , Gene Products, env/metabolism , Humans , Inflammation Mediators/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Toll-Like Receptor 4/genetics
12.
J Pathol ; 236(1): 116-27, 2015 May.
Article in English | MEDLINE | ID: mdl-25639230

ABSTRACT

Melanoma is the leading cause of skin cancer mortality. The major cause of melanoma mortality is metastasis to distant organs, frequently to the brain. The microenvironment plays a critical role in tumourigenesis and metastasis. In order to treat or prevent metastasis, the interactions of disseminated tumour cells with the microenvironment at the metastatic organ have to be elucidated. However, the role of brain stromal cells in facilitating metastatic growth is poorly understood. Astrocytes are glial cells that function in repair and scarring of the brain following injury, in part via mediating neuroinflammation, but the role of astrocytes in melanoma brain metastasis is largely unresolved. Here we show that astrocytes can be reprogrammed by human brain-metastasizing melanoma cells to express pro-inflammatory factors, including the cytokine IL-23, which was highly expressed by metastases-associated astrocytes in vivo. Moreover, we show that the interactions between astrocytes and melanoma cells are reciprocal: paracrine signalling from astrocytes up-regulates the secretion of the matrix metalloproteinase MMP2 and enhances the invasiveness of brain-metastasizing melanoma cells. IL-23 was sufficient to increase melanoma cell invasion, and neutralizing antibodies to IL-23 could block this enhanced migration, implying a functional role for astrocyte-derived IL-23 in facilitating the progression of melanoma brain metastasis. Knocking down the expression of MMP2 in melanoma cells resulted in inhibition of IL-23-induced invasiveness. Thus, our study demonstrates that bidirectional signalling between melanoma cells and astrocytes results in the formation of a pro-inflammatory milieu in the brain, and in functional enhancement of the metastatic potential of disseminated melanoma cells.


Subject(s)
Astrocytes/metabolism , Brain Neoplasms/metabolism , Interleukin-23/metabolism , Melanoma/metabolism , Animals , Brain Neoplasms/secondary , Humans , Male , Matrix Metalloproteinase 2/metabolism , Melanoma/secondary , Mice, Nude , Signal Transduction/physiology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Up-Regulation
13.
Nanomedicine ; 12(1): 43-52, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26410276

ABSTRACT

We previously showed the ability of liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide (mApoE-PA-LIP) to reduce brain Aß in transgenic Alzheimer mice. Herein we investigated the efficacy of mApoE-PA-LIP to withdraw Aß peptide in different aggregation forms from the brain, using a transwell cellular model of the blood-brain barrier and APP/PS1 mice. The spontaneous efflux of Aß oligomers (Aßo), but not of Aß fibrils, from the 'brain' side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the 'blood' compartment. This effect is due to a withdrawal of Aßo exerted by peripheral mApoE-PA-LIP by sink effect, because, when present in the brain side, they did not act as Aßo carrier and limit the oligomer efflux. In vivo peripheral administration of mApoE-PA-LIP significantly increased the plasma Aß level, suggesting that Aß-binding particles exploiting the sink effect can be used as a therapeutic strategy for Alzheimer disease. From the Clinical Editor: Alzheimer disease (AD) at present is an incurable disease, which is thought to be caused by an accumulation of amyloid-ß (Aß) peptides in the brain. Many strategies in combating this disease have been focused on either the prevention or dissolving these peptides. In this article, the authors showed the ability of liposomes bi-functionalized with phosphatidic acid and with an ApoE- derived peptide to withdraw amyloid peptides from the brain. The data would help the future design of more novel treatment for Alzheimer disease.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/isolation & purification , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Nanoparticles/metabolism , Nanoparticles/therapeutic use , Alzheimer Disease/metabolism , Blood-Brain Barrier/chemistry , Cells, Cultured , Feasibility Studies , Humans , Nanoparticles/chemistry
14.
Int J Mol Sci ; 17(6)2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27294916

ABSTRACT

The blood-brain barrier (BBB) has been defined as a critically important protective barrier that is involved in providing essential biologic, physiologic, and immunologic separation between the central nervous system (CNS) and the periphery. Insults to the BBB can cause overall barrier damage or deregulation of the careful homeostasis maintained between the periphery and the CNS. These insults can, therefore, yield numerous phenotypes including increased overall permeability, interendothelial gap formation, alterations in cytokine and chemokine secretion, and accelerated cellular passage. The current studies expose the human brain microvascular endothelial cell line, hCMEC/D3, to prolonged morphine exposure and aim to uncover the mechanisms underlying alterations in barrier function in vitro. These studies show alterations in the mRNA and protein levels of the cellular adhesion molecules (CAMs) intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and activated leukocyte cell adhesion molecule that correlate with an increased firm adhesion of the CD3⁺ subpopulation of peripheral blood mononuclear cells (PBMCs). Overall, these studies suggest that prolonged morphine exposure may result in increased cell migration into the CNS, which may accelerate pathological processes in many diseases that involve the BBB.


Subject(s)
Analgesics, Opioid/pharmacology , Blood-Brain Barrier/drug effects , Cell Adhesion Molecules/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Morphine/pharmacology , Analgesics, Opioid/adverse effects , Blood-Brain Barrier/cytology , Blood-Brain Barrier/metabolism , Cell Adhesion , Cell Adhesion Molecules/genetics , Cell Line , Cell Movement , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/physiology , Endothelium, Vascular/metabolism , Humans , Morphine/adverse effects
15.
Int J Cancer ; 136(6): 1296-307, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25046141

ABSTRACT

Brain metastases occur frequently in melanoma patients with advanced disease whereby the prognosis is dismal. The underlying mechanisms of melanoma brain metastasis development are not well understood. Identification of molecular determinants regulating melanoma brain metastasis would advance the development of prevention and therapy strategies for this disease. Gene expression profiles of cutaneous and brain-metastasizing melanoma variants from three xenograft tumor models established in our laboratory revealed that expression of tight junction component CLDN1 was lower in the brain-metastasizing variants than in cutaneous variants from the same melanoma. The objective of our study was to determine the significance of CLDN1 downregulation/loss in metastatic melanoma and its role in melanoma brain metastasis. An immunohistochemical analysis of human cells of the melanocyte lineage indicated a significant CLDN1 downregulation in metastatic melanomas. Transduction of melanoma brain metastatic cells expressing low levels of CLDN1 with a CLDN1 retrovirus suppressed their metastatic phenotype. CLDN1-overexpressing melanoma cells expressed a lower ability to migrate and adhere to extracellular matrix, reduced tumor aggressiveness in nude mice and, most importantly, eliminated the formation of micrometastases in the brain. In sharp contrast, the ability of the CLDN1-overexpressing cells to form lung micrometastases was not impaired. CLDN1-mediated interactions between these cells and brain endothelial cells constitute the mechanism underlying these results. Taken together, we demonstrated that downregulation or loss of CLDN1 supports the formation of melanoma brain metastasis, and that CLDN1 expression could be a useful prognostic predictor for melanoma patients with a high risk of brain metastasis.


Subject(s)
Brain Neoplasms/secondary , Claudin-1/physiology , Melanoma/secondary , Skin Neoplasms/pathology , Tumor Microenvironment , Animals , Cell Adhesion , Cell Line, Tumor , Cell Lineage , Cell Movement , Humans , Male , Mice , Mice, Inbred BALB C , Neoplasm Micrometastasis , Phenotype
16.
J Gen Virol ; 96(Pt 7): 1682-95, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25711966

ABSTRACT

Human cerebral microvascular endothelial cells (hCMEC/D3 cell line) form a steady polarized barrier when cultured in vitro on a permeable membrane. Their susceptibility to enterovirus (EV) strains was analysed to investigate how these viruses may cross the blood-brain barrier. A sample of 88 virus strains was selected on phylogenetic features amongst 43 epidemiologically relevant types of the four EV species A-D. The EV-A71 genome was replicated at substantial rates, whilst the infectious virus was released at extremely low but sustained rates at both barrier sides for at least 4 days. EV-A71 antigens were detected in a limited number of cells. The properties of the endothelial barrier (structure and permeability) remained intact throughout infection. The chronic EV-A71 infection was in sharp contrast to the productive infection of cytolytic EVs (e.g. echoviruses E-6 and E-30). The hCMEC/D3 barriers infected with the latter EVs exhibited elevated proportions of apoptotic and necrotic cells, which resulted in major injuries to the endothelial barriers with a dramatic increase of paracellular permeability and virus crossing to the abluminal side. The following intracellular rearrangements were also seen: early destruction of the actin cytoskeleton, remodelling of intracellular membranes and reorganization of the mitochondrion network in a small cluster near the perinuclear space.


Subject(s)
Blood-Brain Barrier/virology , Endothelial Cells/physiology , Endothelial Cells/virology , Enterovirus/physiology , Antigens, Viral/analysis , Apoptosis , Cell Line , Enterovirus/growth & development , Humans , Models, Biological , Permeability , Serogroup
17.
J Pharmacol Exp Ther ; 353(1): 192-200, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25670633

ABSTRACT

Dysregulation of blood-brain barrier (BBB) transport function is thought to exacerbate neuronal damage in acute ischemic stroke. The purpose of this study was to clarify the characteristics of pannexin (Px) and/or connexin (Cx) hemichannel(s)-mediated transport of organic anions and cations in human BBB endothelial cell line hCMEC/D3 and to identify inhibitors of hemichannel opening in hCMEC/D3 cells in the absence of extracellular Ca(2+), a condition mimicking acute ischemic stroke. In the absence of extracellular Ca(2+), the cells showed increased uptake and efflux transport of organic ionic fluorescent dyes. Classic hemichannel inhibitors markedly inhibited the enhanced uptake and efflux. Quantitative targeted absolute proteomics confirmed Px1 and Cx43 protein expression in plasma membrane of hCMEC/D3 cells. Knockdown of Px1 and Cx43 with the small interfering RNAs significantly inhibited the enhanced uptake and efflux of organic anionic and cationic fluorescent dyes. Clinically used cilnidipine and progesterone, which have neuroprotective effects in animal ischemia models, were identified as inhibitors of hemichannel opening. These findings suggest that altered transport dynamics at the human BBB in the absence of extracellular Ca(2+) is at least partly attributable to opening of Px1 and Cx43 hemichannels. Therefore, we speculate that Px1 and Cx43 may be potential drug targets to ameliorate BBB transport dysregulation during acute ischemia.


Subject(s)
Blood-Brain Barrier/metabolism , Calcium/metabolism , Connexin 43/metabolism , Connexins/metabolism , Endothelial Cells/metabolism , Nerve Tissue Proteins/metabolism , Anions , Biological Transport/drug effects , Blood-Brain Barrier/cytology , Blood-Brain Barrier/drug effects , Cations , Cell Line , Cell Membrane/metabolism , Connexin 43/antagonists & inhibitors , Connexins/antagonists & inhibitors , Endothelial Cells/drug effects , Extracellular Space/metabolism , Fluorescent Dyes/metabolism , Humans , Ion Channel Gating , Microvessels/cytology , Microvessels/metabolism , Nerve Tissue Proteins/antagonists & inhibitors
18.
Pharm Res ; 32(3): 1072-83, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25236341

ABSTRACT

PURPOSE: Owing to restricted access of pharmacological agents into the brain due to blood brain barrier (BBB) there is a need: 1. to develop a more representative 3-D-co-culture model of tumor-BBB interaction to investigate drug and nanoparticle transport into the brain for diagnostic and therapeutic evaluation. 2. to address the lack of new alternative methods to animal testing according to replacement-reduction-refinement principles. In this work, in vitro BBB-medulloblastoma 3-D-co-culture models were established using immortalized human primary brain endothelial cells (hCMEC/D3). METHODS: hCMEC/D3 cells were cultured in presence and in absence of two human medulloblastoma cell lines on Transwell membranes. In vitro models were characterized for BBB formation, zonula occludens-1 expression and permeability to dextran. Transferrin receptors (Tfr) expressed on hCMEC/D3 were exploited to facilitate arsonoliposome (ARL) permeability through the BBB to the tumor by covalently attaching an antibody specific to human Tfr. The effect of anticancer ARLs on hCMEC/D3 was assessed. RESULTS: In vitro BBB and BBB-tumor co-culture models were established successfully. BBB permeability was affected by the presence of tumor aggregates as suggested by increased permeability of ARLs. There was a 6-fold and 8-fold increase in anti-Tfr-ARL uptake into VC312R and BBB-DAOY co-culture models, respectively, compared to plain ARLs. CONCLUSION: The three-dimensional models might be appropriate models to study the transport of various drugs and nanocarriers (liposomes and immunoarsonoliposomes) through the healthy and diseased BBB. The immunoarsonoliposomes can be potentially used as anticancer agents due to good tolerance of the in vitro BBB model to their toxic effect.


Subject(s)
Antibodies/metabolism , Antineoplastic Agents/metabolism , Arsenicals/metabolism , Blood-Brain Barrier/metabolism , Capillary Permeability , Cerebellar Neoplasms/metabolism , Endothelial Cells/metabolism , Immunoconjugates/metabolism , Medulloblastoma/metabolism , Polyethylene Glycols/chemistry , Antibodies/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arsenicals/chemistry , Arsenicals/pharmacology , Biological Transport , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/immunology , Cell Line, Tumor , Cell Survival/drug effects , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/pathology , Chemistry, Pharmaceutical , Coculture Techniques , Endothelial Cells/drug effects , Endothelial Cells/immunology , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Liposomes , Medulloblastoma/immunology , Medulloblastoma/pathology , Receptors, Transferrin/immunology , Receptors, Transferrin/metabolism , Technology, Pharmaceutical/methods
19.
Nanotechnology ; 26(49): 495103, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26574295

ABSTRACT

Nanotechnology can be an important tool to improve the permeability of some drugs for the blood-brain barrier. In this work we created a new system to enter the brain by functionalizing solid lipid nanoparticles with apolipoprotein E, aiming to enhance their binding to low-density lipoprotein receptors on the blood-brain barrier endothelial cells. Solid lipid nanoparticles were successfully functionalized with apolipoprotein E using two distinct strategies that took advantage of the strong interaction between biotin and avidin. Transmission electron microscopy images revealed spherical nanoparticles, and dynamic light scattering gave a Z-average under 200 nm, a polydispersity index below 0.2, and a zeta potential between -10 mV and -15 mV. The functionalization of solid lipid nanoparticles with apolipoprotein E was demonstrated by infrared spectroscopy and fluorimetric assays. In vitro cytotoxic effects were evaluated by MTT and LDH assays in the human cerebral microvascular endothelial cells (hCMEC/D3) cell line, a human blood-brain barrier model, and revealed no toxicity up to 1.5 mg ml(-1) over 4 h of incubation. The brain permeability was evaluated in transwell devices with hCMEC/D3 monolayers, and a 1.5-fold increment in barrier transit was verified for functionalized nanoparticles when compared with non-functionalized ones. The results suggested that these novel apolipoprotein E-functionalized nanoparticles resulted in dynamic stable systems capable of being used for an improved and specialized brain delivery of drugs through the blood-brain barrier.


Subject(s)
Apolipoproteins E/chemistry , Blood-Brain Barrier/metabolism , Drug Carriers/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Cell Line , Cell Survival , Humans
20.
Cell Mol Life Sci ; 71(3): 499-516, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23771630

ABSTRACT

Low delivery of many anticancer drugs across the blood-brain barrier (BBB) is a limitation to the success of chemotherapy in glioblastoma. This is because of the high levels of ATP-binding cassette transporters like P-glycoprotein (Pgp/ABCB1), which effluxes drugs back to the bloodstream. Temozolomide is one of the few agents able to cross the BBB; its effects on BBB cells permeability and Pgp activity are not known. We found that temozolomide, at therapeutic concentration, increased the transport of Pgp substrates across human brain microvascular endothelial cells and decreased the expression of Pgp. By methylating the promoter of Wnt3 gene, temozolomide lowers the endogenous synthesis of Wnt3 in BBB cells, disrupts the Wnt3/glycogen synthase kinase 3/ß-catenin signaling, and reduces the binding of ß-catenin on the promoter of mdr1 gene, which encodes for Pgp. In co-culture models of BBB cells and human glioblastoma cells, pre-treatment with temozolomide increases the delivery, cytotoxicity, and antiproliferative effects of doxorubicin, vinblastine, and topotecan, three substrates of Pgp that are usually poorly delivered across BBB. Our work suggests that temozolomide increases the BBB permeability of drugs that are normally effluxed by Pgp back to the bloodstream. These findings may pave the way to new combinatorial chemotherapy schemes in glioblastoma.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/pharmacology , Blood-Brain Barrier/metabolism , Capillary Permeability/drug effects , Dacarbazine/analogs & derivatives , Gene Expression Regulation/drug effects , Signal Transduction/drug effects , Wnt3 Protein/metabolism , Cell Line, Tumor , DNA Methylation/drug effects , DNA Methylation/genetics , Dacarbazine/pharmacology , Gene Expression Regulation/physiology , Humans , Promoter Regions, Genetic/genetics , Signal Transduction/physiology , Temozolomide , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL